We report on structural and dynamic properties in water of all the isomers of both peptides related to the trans and cis conformations of the peptide bonds preceding the proline (Pro) residues. Free-energy calculations indicate that the isomers having the Pro closer to the N-terminus (Pro1) in trans and the Pro2 in cis conformations are the most populated. Furthermore, the backbone is more flexible for APGPR than for VPDPR, and its conformation is more stable in the hydrophilic C-terminal moiety than in the hydrophobic N-terminal region.

Molecular dynamics simulation of the enterostatin APGPR and VPDPR peptides in water / G. Trucco, S.L. Fornili. - In: CHEMICAL PHYSICS LETTERS. - ISSN 0009-2614. - 446:1-3(2007), pp. 145-150.

Molecular dynamics simulation of the enterostatin APGPR and VPDPR peptides in water

G. Trucco
Primo
;
S.L. Fornili
Ultimo
2007

Abstract

We report on structural and dynamic properties in water of all the isomers of both peptides related to the trans and cis conformations of the peptide bonds preceding the proline (Pro) residues. Free-energy calculations indicate that the isomers having the Pro closer to the N-terminus (Pro1) in trans and the Pro2 in cis conformations are the most populated. Furthermore, the backbone is more flexible for APGPR than for VPDPR, and its conformation is more stable in the hydrophilic C-terminal moiety than in the hydrophobic N-terminal region.
Settore INF/01 - Informatica
2007
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/37079
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact