BACKGROUND: Increasing environmental levels of brominated flame retardants raise concern about possible adverse effects, particularly through early developmental exposure. OBJECTIVE: The objective of this research was to investigate neurodevelopmental mechanisms underlying previously observed behavioral impairments observed after neonatal exposure to polybrominated diphenyl ethers (PBDEs). METHODS: C57Bl/6 mice received a single oral dose of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) on postnatal day (PND) 10 (i.e., during the brain growth spurt). On PND17-19, effects on synaptic plasticity, levels of postsynaptic proteins involved in long-term potentiation (LTP), and vesicular release mechanisms were studied ex vivo. We investigated possible acute in vitro effects of BDE-47 on vesicular catecholamine release and intracellular Ca(2+) in rat pheochromocytoma (PC12) cells. RESULTS: Field-excitatory postsynaptic potential (f-EPSP) recordings in the hippocampal CA1 area demonstrated reduced LTP after exposure to 6.8 mg (14 micromol)/kg body weight (bw) BDE-47, whereas paired-pulse facilitation was not affected. Western blotting of proteins in the postsynaptic, triton-insoluble fraction of hippocampal tissue revealed a reduction of glutamate receptor subunits NR2B and GluR1 and autophosphorylated-active Ca(2+)/calmodulin-dependent protein kinase II (alphaCaMKII), whereas other proteins tested appeared unaffected. Amperometric recordings in chromaffin cells from mice exposed to 68 mg (140 micromol)/kg bw BDE-47 did not reveal changes in catecholamine release parameters. Modest effects on vesicular release and intracellular Ca(2+) in PC12 cells were seen following acute exposure to 20 microM BDE-47. The combined results suggest a post-synaptic mechanism in vivo. CONCLUSION: Early neonatal exposure to a single high dose of BDE-47 causes a reduction of LTP together with changes in postsynaptic proteins involved in synaptic plasticity in the mouse hippocampus

Neonatal exposure to brominated flame retardant BDE-47 reduces long-term potentiation and postsynaptic protein levels in mouse hippocampus / M.M. Dingemans, G.M. Remakers, F. Gardoni, R.G. van Kleef, A. Bergman, M. Diluca, M. van den Berg, R.H. Westerink, H.P. Vijverberg. - In: ENVIRONMENTAL HEALTH PERSPECTIVES. - ISSN 0091-6765. - 115:6(2007 Jun), pp. 865-870. [10.1289/ehp.9860]

Neonatal exposure to brominated flame retardant BDE-47 reduces long-term potentiation and postsynaptic protein levels in mouse hippocampus

F. Gardoni;M. Diluca;
2007

Abstract

BACKGROUND: Increasing environmental levels of brominated flame retardants raise concern about possible adverse effects, particularly through early developmental exposure. OBJECTIVE: The objective of this research was to investigate neurodevelopmental mechanisms underlying previously observed behavioral impairments observed after neonatal exposure to polybrominated diphenyl ethers (PBDEs). METHODS: C57Bl/6 mice received a single oral dose of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) on postnatal day (PND) 10 (i.e., during the brain growth spurt). On PND17-19, effects on synaptic plasticity, levels of postsynaptic proteins involved in long-term potentiation (LTP), and vesicular release mechanisms were studied ex vivo. We investigated possible acute in vitro effects of BDE-47 on vesicular catecholamine release and intracellular Ca(2+) in rat pheochromocytoma (PC12) cells. RESULTS: Field-excitatory postsynaptic potential (f-EPSP) recordings in the hippocampal CA1 area demonstrated reduced LTP after exposure to 6.8 mg (14 micromol)/kg body weight (bw) BDE-47, whereas paired-pulse facilitation was not affected. Western blotting of proteins in the postsynaptic, triton-insoluble fraction of hippocampal tissue revealed a reduction of glutamate receptor subunits NR2B and GluR1 and autophosphorylated-active Ca(2+)/calmodulin-dependent protein kinase II (alphaCaMKII), whereas other proteins tested appeared unaffected. Amperometric recordings in chromaffin cells from mice exposed to 68 mg (140 micromol)/kg bw BDE-47 did not reveal changes in catecholamine release parameters. Modest effects on vesicular release and intracellular Ca(2+) in PC12 cells were seen following acute exposure to 20 microM BDE-47. The combined results suggest a post-synaptic mechanism in vivo. CONCLUSION: Early neonatal exposure to a single high dose of BDE-47 causes a reduction of LTP together with changes in postsynaptic proteins involved in synaptic plasticity in the mouse hippocampus
αCaMKII; Brain growth spurt; Developmental neurotoxicity; Field-EPSP recording; Hippocampal synaptic plasticity; Postsynaptic density
Settore BIO/14 - Farmacologia
giu-2007
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/36611
Citazioni
  • ???jsp.display-item.citation.pmc??? 36
  • Scopus 123
  • ???jsp.display-item.citation.isi??? 110
social impact