The manipulation of ferromagnetic layer magnetization via electrical pulse is driving an intense research due to the important applications that this result will have on memory devices and sensors. In this study we realized a magnetotunnel junction in which one layer is made of Galfenol (Fe1-xGax) which possesses one of the highest magnetostrictive coefficient known. The multilayer stack has been grown by molecular beam epitaxy and e-beam evaporation. Optical lithography and physical etching have been combined to obtain 20x20 micron sized pillars. The obtained structures show tunneling conductivity across the junction and a tunnel magnetoresistance(TMR) effect of up to 11.5% in amplitude.
Magnetoresistance of galfenol-based magnetic tunnel junction / B. Gobaut, G. Vinai, C. Castán Guerrero, D. Krizmancic, H. Rafaqat, S. Roddaro, G. Rossi, G. Panaccione, M. Eddrief, M. Marangolo, P. Torelli. - In: AIP ADVANCES. - ISSN 2158-3226. - 5:12(2015 Dec 21), pp. 127128.1-127128.7. [10.1063/1.4939019]
Magnetoresistance of galfenol-based magnetic tunnel junction
G. Rossi;
2015
Abstract
The manipulation of ferromagnetic layer magnetization via electrical pulse is driving an intense research due to the important applications that this result will have on memory devices and sensors. In this study we realized a magnetotunnel junction in which one layer is made of Galfenol (Fe1-xGax) which possesses one of the highest magnetostrictive coefficient known. The multilayer stack has been grown by molecular beam epitaxy and e-beam evaporation. Optical lithography and physical etching have been combined to obtain 20x20 micron sized pillars. The obtained structures show tunneling conductivity across the junction and a tunnel magnetoresistance(TMR) effect of up to 11.5% in amplitude.File | Dimensione | Formato | |
---|---|---|---|
1.4939019.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
1.67 MB
Formato
Adobe PDF
|
1.67 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.