We address the precision of optical interferometers fed by quantum and semiclassical Gaussian states involving passive and/or active elements, such as beam splitters, photodetectors, and optical parametric amplifiers. We first address the ultimate bounds to precision by discussing the behavior of the quantum Fisher information. We then consider photodetection at the output and calculate the sensitivity of the interferometers taking into account the nonunit quantum efficiency of the detectors. Our results show that in the ideal case of photon number detectors with unit quantum efficiency the best configuration is the symmetric one, namely, a passive (active) interferometer with a passive (active) detection stage: in this case one may achieve Heisenberg scaling of sensitivity by suitably optimizing over Gaussian states at the input. On the other hand, in the realistic case of detectors with nonunit quantum efficiency, the performances of the passive scheme are unavoidably degraded, whereas detectors involving optical parametric amplifiers allow us to fully compensate for the presence of loss in the detection stage, thus restoring the Heisenberg scaling.

Gaussian-state interferometry with passive and active elements / C. Sparaciari, S. Olivares, M.G.A. Paris. - In: PHYSICAL REVIEW A. - ISSN 2469-9926. - 93:2(2016 Feb 05), pp. 023810.1-023810.13.

Gaussian-state interferometry with passive and active elements

S. Olivares;M.G.A. Paris
2016

Abstract

We address the precision of optical interferometers fed by quantum and semiclassical Gaussian states involving passive and/or active elements, such as beam splitters, photodetectors, and optical parametric amplifiers. We first address the ultimate bounds to precision by discussing the behavior of the quantum Fisher information. We then consider photodetection at the output and calculate the sensitivity of the interferometers taking into account the nonunit quantum efficiency of the detectors. Our results show that in the ideal case of photon number detectors with unit quantum efficiency the best configuration is the symmetric one, namely, a passive (active) interferometer with a passive (active) detection stage: in this case one may achieve Heisenberg scaling of sensitivity by suitably optimizing over Gaussian states at the input. On the other hand, in the realistic case of detectors with nonunit quantum efficiency, the performances of the passive scheme are unavoidably degraded, whereas detectors involving optical parametric amplifiers allow us to fully compensate for the presence of loss in the detection stage, thus restoring the Heisenberg scaling.
English
quantum interferometry; squeezing
Settore FIS/03 - Fisica della Materia
Articolo
Esperti anonimi
Pubblicazione scientifica
   Quantum Probes for Complex Systems
   QuProCS
   EUROPEAN COMMISSION
   H2020
   641277
5-feb-2016
American Physical Society
93
2
023810
1
13
13
Pubblicato
Periodico con rilevanza internazionale
crossref
Aderisco
info:eu-repo/semantics/article
Gaussian-state interferometry with passive and active elements / C. Sparaciari, S. Olivares, M.G.A. Paris. - In: PHYSICAL REVIEW A. - ISSN 2469-9926. - 93:2(2016 Feb 05), pp. 023810.1-023810.13.
open
Prodotti della ricerca::01 - Articolo su periodico
3
262
Article (author)
si
C. Sparaciari, S. Olivares, M.G.A. Paris
File in questo prodotto:
File Dimensione Formato  
sparaciari_PRA_93_023810.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.43 MB
Formato Adobe PDF
1.43 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/363158
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 72
  • ???jsp.display-item.citation.isi??? 74
social impact