Insufficient amount of physical activity, and hence storage of calories may lead depression, obesity, cardiovascular diseases, and diabetes. The amount of consumed calorie depends on the type of activity. The recognition of physical activity is very important to estimate the amount of calories spent by a subject every day. There are some research works already published in the literature for activity recognition through accelerometers (body worn sensors). The accuracy of any recognition system depends on the robustness of selected features and classifiers. The typical features reported for most physical activities recognitions are autoregressive coefficients (ARcoeffs), signal magnitude area (SMA), tilt angle (TA), and standard deviation (STD). In this study, we have studied the feasibility of using single value of sample entropy estimated parametrically (SETH) of an AR model instead of ARcoeffs. After feasibility study, we also compared the recognition accuracies between two popular classifiers ı.e. artificial neural network (ANN) and support vector machines (SVM). The recognition accuracies using linear structure (where all types of activities are classified using a single classifier) and hierarchical structure (where activities are first divided into static and dynamic events, and then activities of each event are classified in the second stage). The study showed that the use of SETH provides similar recognition accuracy (69.82%) as provided by ARcoeffs (67.67%) using ANN. The linear structure of SVM performs better (average accuracy of SVM: 98.22%) than linear ANN (average accuracy with ANN: 94.78%). The use of hierarchical structure of ANN increases the average recognition accuracy of static activities to about 100%. However, no significant changes are observed using hierarchical SVM than the linear one.

Parametric estimation of sample entropy for physical activity recognition / M. Aktaruzzaman, N. Scarabottolo, R. Sassi (PROCEEDINGS OF THE ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY). - In: Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE[s.l] : IEEE Press, 2015 Aug. - ISBN 9781424492718. - pp. 470-473 (( Intervento presentato al 37. convegno EMBC tenutosi a Milano nel 2015 [10.1109/EMBC.2015.7318401].

Parametric estimation of sample entropy for physical activity recognition

M. Aktaruzzaman
Primo
;
N. Scarabottolo
Secondo
;
R. Sassi
Ultimo
2015

Abstract

Insufficient amount of physical activity, and hence storage of calories may lead depression, obesity, cardiovascular diseases, and diabetes. The amount of consumed calorie depends on the type of activity. The recognition of physical activity is very important to estimate the amount of calories spent by a subject every day. There are some research works already published in the literature for activity recognition through accelerometers (body worn sensors). The accuracy of any recognition system depends on the robustness of selected features and classifiers. The typical features reported for most physical activities recognitions are autoregressive coefficients (ARcoeffs), signal magnitude area (SMA), tilt angle (TA), and standard deviation (STD). In this study, we have studied the feasibility of using single value of sample entropy estimated parametrically (SETH) of an AR model instead of ARcoeffs. After feasibility study, we also compared the recognition accuracies between two popular classifiers ı.e. artificial neural network (ANN) and support vector machines (SVM). The recognition accuracies using linear structure (where all types of activities are classified using a single classifier) and hierarchical structure (where activities are first divided into static and dynamic events, and then activities of each event are classified in the second stage). The study showed that the use of SETH provides similar recognition accuracy (69.82%) as provided by ARcoeffs (67.67%) using ANN. The linear structure of SVM performs better (average accuracy of SVM: 98.22%) than linear ANN (average accuracy with ANN: 94.78%). The use of hierarchical structure of ANN increases the average recognition accuracy of static activities to about 100%. However, no significant changes are observed using hierarchical SVM than the linear one.
Settore INF/01 - Informatica
Settore ING-INF/06 - Bioingegneria Elettronica e Informatica
ago-2015
IEEE
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
07318401.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 900.66 kB
Formato Adobe PDF
900.66 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/356224
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 3
social impact