First episode psychosis (FEP) patients are of particular interest for neuroimaging investigations because of the absence of confounding effects due to medications and chronicity. Nonetheless, imaging data are prone to heterogeneity because for example of age, gender or parameter setting differences. With this work, we wanted to take into account possible nuisance effects of age and gender differences across dataset, not correcting the data as a pre-processing step, but including the effect of nuisance covariates in the classification phase. To this aim, we developed a method which, based on multiple kernel learning (MKL), exploits the effect of these confounding variables with a subject-depending kernel weighting procedure. We applied this method to a dataset of cortical thickness obtained from structural magnetic resonance images (MRI) of 127 FEP patients and 127 healthy controls, who underwent either a 3Tesla (T) or a 1.5T MRI acquisition. We obtained good accuracies, notably better than those obtained with standard SVM or MKL methods, up to more than 80% for frontal and temporal areas. To our best knowledge, this is the largest classification study in FEP population, showing that fronto-temporal cortical thickness can be used as a potential marker to classify patients with psychosis.

Classification of first-episode psychosis in a large cohort of patients using support vector machine and multiple kernel learning techniques / L. Squarcina, U. Castellani, M. Bellani, C. Perlini, A. Lasalvia, N. Dusi, C. Bonetto, D. Cristofalo, S. Tosato, G. Rambaldelli, F. Alessandrini, G. Zoccatelli, R. Pozzi Mucelli, D. Lamonaca, E. Ceccato, F. Pileggi, F. Mazzi, P. Santonastaso, M. Ruggeri, P. Brambilla. - In: NEUROIMAGE. - ISSN 1053-8119. - 145:special issue(2017 Jan), pp. 238-245. [10.1016/j.neuroimage.2015.12.007]

Classification of first-episode psychosis in a large cohort of patients using support vector machine and multiple kernel learning techniques

L. Squarcina;P. Brambilla
2017-01

Abstract

First episode psychosis (FEP) patients are of particular interest for neuroimaging investigations because of the absence of confounding effects due to medications and chronicity. Nonetheless, imaging data are prone to heterogeneity because for example of age, gender or parameter setting differences. With this work, we wanted to take into account possible nuisance effects of age and gender differences across dataset, not correcting the data as a pre-processing step, but including the effect of nuisance covariates in the classification phase. To this aim, we developed a method which, based on multiple kernel learning (MKL), exploits the effect of these confounding variables with a subject-depending kernel weighting procedure. We applied this method to a dataset of cortical thickness obtained from structural magnetic resonance images (MRI) of 127 FEP patients and 127 healthy controls, who underwent either a 3Tesla (T) or a 1.5T MRI acquisition. We obtained good accuracies, notably better than those obtained with standard SVM or MKL methods, up to more than 80% for frontal and temporal areas. To our best knowledge, this is the largest classification study in FEP population, showing that fronto-temporal cortical thickness can be used as a potential marker to classify patients with psychosis.
Schizophrenia; Affective psychosis; Cortical thickness; MRI; Frontal; Temporal cortex
Settore MED/25 - Psichiatria
Immune gene expression and white matter pathology in first manic patients beforeand after treatment. A multimodal imaging genetic study
12-dic-2015
Article (author)
File in questo prodotto:
File Dimensione Formato  
Squarcina_ML-FEP_NI17.pdf

non disponibili

Tipologia: Publisher's version/PDF
Dimensione 248.95 kB
Formato Adobe PDF
248.95 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/354722
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 34
social impact