We hypothesized that, as occurring in cars, body structural asymmetries could generate asymmetry in the kinematics/dynamics of locomotion, ending up in a higher metabolic cost of transport, i.e. more 'fuel' needed to travel a given distance. Previous studies found the asymmetries in horses' body negatively correlated with galloping performance. In this investigation, we analyzed anatomical differences between the left and right lower limbs as a whole by performing 3D cross-correlation of Magnetic Resonance Images of 19 male runners, clustered as Untrained Runners, Occasional Runners and Skilled Runners. Running kinematics of their body centre of mass were obtained from the body segments coordinates measured by a 3D motion capture system at incremental running velocities on a treadmill. A recent mathematical procedure quantified the asymmetry of the body centre of mass trajectory between the left and right steps. During the same sessions, runners' metabolic consumption was measured and the cost of transport was calculated. No correlations were found between anatomical/kinematic variables and the metabolic cost of transport, regardless of the training experience. However, anatomical symmetry significant correlated to the kinematic symmetry, and the most trained subjects showed the highest level of kinematic symmetry during running. Results suggest that despite the significant effects of anatomical asymmetry on kinematics, either those changes are too small to affect economy or some plastic compensation in the locomotor system mitigates the hypothesized change in energy expenditure of running. © 2013 Seminati et al.

Anatomically Asymmetrical Runners Move More Asymmetrically at the Same Metabolic Cost / E. Seminati, F. Nardello, P. Zamparo, L.P. Ardigò, N. Faccioli, A.E. Minetti. - In: PLOS ONE. - ISSN 1932-6203. - 8:9(2013 Sep 24), pp. e74134.1-e74134.8. [10.1371/journal.pone.0074134]

Anatomically Asymmetrical Runners Move More Asymmetrically at the Same Metabolic Cost

E. Seminati
;
F. Nardello
Secondo
;
A.E. Minetti
Ultimo
2013

Abstract

We hypothesized that, as occurring in cars, body structural asymmetries could generate asymmetry in the kinematics/dynamics of locomotion, ending up in a higher metabolic cost of transport, i.e. more 'fuel' needed to travel a given distance. Previous studies found the asymmetries in horses' body negatively correlated with galloping performance. In this investigation, we analyzed anatomical differences between the left and right lower limbs as a whole by performing 3D cross-correlation of Magnetic Resonance Images of 19 male runners, clustered as Untrained Runners, Occasional Runners and Skilled Runners. Running kinematics of their body centre of mass were obtained from the body segments coordinates measured by a 3D motion capture system at incremental running velocities on a treadmill. A recent mathematical procedure quantified the asymmetry of the body centre of mass trajectory between the left and right steps. During the same sessions, runners' metabolic consumption was measured and the cost of transport was calculated. No correlations were found between anatomical/kinematic variables and the metabolic cost of transport, regardless of the training experience. However, anatomical symmetry significant correlated to the kinematic symmetry, and the most trained subjects showed the highest level of kinematic symmetry during running. Results suggest that despite the significant effects of anatomical asymmetry on kinematics, either those changes are too small to affect economy or some plastic compensation in the locomotor system mitigates the hypothesized change in energy expenditure of running. © 2013 Seminati et al.
Adult; Biomechanical Phenomena; Humans; Magnetic Resonance Imaging; Male; Middle Aged; Young Adult; Energy Metabolism; Running; Agricultural and Biological Sciences (all); Biochemistry, Genetics and Molecular Biology (all); Medicine (all)
Settore BIO/09 - Fisiologia
24-set-2013
Article (author)
File in questo prodotto:
File Dimensione Formato  
doi_10.1371_journal.pone.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 882.05 kB
Formato Adobe PDF
882.05 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/350297
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 29
social impact