The Hessian of a general cubic surface is a nodal quartic surface, hence its desingularisation is a K3 surface. We determine the transcendental lattice of the Hessian K3 surface for various cubic surfaces (with nodes and/or Eckardt points for example). Classical invariant theory shows that the moduli space of cubic surfaces is a weighted projective space. We describe the singular locus and some other subvarieties of the moduli space.

Hessians and the moduli space of cubic surfaces / E. Dardanelli, B. van Geemen (CONTEMPORARY MATHEMATICS). - In: Algebraic geometry / [a cura di] JongHae Keum, Shigeyuki Kondo. - Providence : American Mathematical Society, 2007. - ISBN 978-0-8218-4201-0. - pp. 17-36 (( convegno Korea-Japan Conference in honor of Igor Dolgachev's 60th birthday tenutosi a Seoul nel 2004.

Hessians and the moduli space of cubic surfaces

B. van Geemen
Ultimo
2007

Abstract

The Hessian of a general cubic surface is a nodal quartic surface, hence its desingularisation is a K3 surface. We determine the transcendental lattice of the Hessian K3 surface for various cubic surfaces (with nodes and/or Eckardt points for example). Classical invariant theory shows that the moduli space of cubic surfaces is a weighted projective space. We describe the singular locus and some other subvarieties of the moduli space.
Settore MAT/03 - Geometria
Book Part (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/34942
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 19
social impact