By grafting solid pieces of cerebellar anlage onto the surface of the adult rat cerebellum, we have investigated the problem of the interactions between embryonic and adult neurons in an intact brain. A few days after grafting, embryonic astrocytic processes crossed the graft--host interface and radiated into the recipient molecular layer. Several grafted Purkinje cells also migrated into the host brain along such processes as well as adult Bergmann glia. Adult climbing fibres, labelled by means of Phaseolus vulgaris leucoagglutinin (PHA-L), sprouted new collateral branches which terminated on embryonic Purkinje cells at both extra- and intraparenchymal levels. No sign of activation of host astroglia or microglia was evident in the host cerebellum in relation to these processes. Embryonic Purkinje cells which migrated into the host cerebellum developed an adult-like morphology. Intraparenchymal grafts of neocortical embryonic tissue induced conspicuous growth of host olivary axons, characterized by a pattern which was different from that observed following cerebellar grafts. By contrast, when neocortical tissue was placed onto the surface of the recipient cerebellum, graft--host interactions were limited and climbing fibre sprouting was rarely seen. These results show that (i) supernumerary Purkinje cells can penetrate and settle in the adult intact cerebellar cortex, (ii) adult climbing fibres are able to innervate these new targets in the absence of any injury or activation of non-neuronal cells of the adult brain, and (iii) in the absence of damage to the adult brain, the plasticity of adult olivary axons is specifically elicited and controlled by embryonic Purkinje cells.

Embryonic purkinje cells grafted on the surface of the adult uninjured rat cerebellum migrate in the host parenchyma and induce sprouting of intact climbing fibres / F. Rossi, T. Borsello, P. Strata. - In: EUROPEAN JOURNAL OF NEUROSCIENCE. - ISSN 0953-816X. - 6:1(1994 Jan 01), pp. 121-136. [10.1111/j.1460-9568.1994.tb00254.x]

Embryonic purkinje cells grafted on the surface of the adult uninjured rat cerebellum migrate in the host parenchyma and induce sprouting of intact climbing fibres

T. Borsello
Secondo
;
1994

Abstract

By grafting solid pieces of cerebellar anlage onto the surface of the adult rat cerebellum, we have investigated the problem of the interactions between embryonic and adult neurons in an intact brain. A few days after grafting, embryonic astrocytic processes crossed the graft--host interface and radiated into the recipient molecular layer. Several grafted Purkinje cells also migrated into the host brain along such processes as well as adult Bergmann glia. Adult climbing fibres, labelled by means of Phaseolus vulgaris leucoagglutinin (PHA-L), sprouted new collateral branches which terminated on embryonic Purkinje cells at both extra- and intraparenchymal levels. No sign of activation of host astroglia or microglia was evident in the host cerebellum in relation to these processes. Embryonic Purkinje cells which migrated into the host cerebellum developed an adult-like morphology. Intraparenchymal grafts of neocortical embryonic tissue induced conspicuous growth of host olivary axons, characterized by a pattern which was different from that observed following cerebellar grafts. By contrast, when neocortical tissue was placed onto the surface of the recipient cerebellum, graft--host interactions were limited and climbing fibre sprouting was rarely seen. These results show that (i) supernumerary Purkinje cells can penetrate and settle in the adult intact cerebellar cortex, (ii) adult climbing fibres are able to innervate these new targets in the absence of any injury or activation of non-neuronal cells of the adult brain, and (iii) in the absence of damage to the adult brain, the plasticity of adult olivary axons is specifically elicited and controlled by embryonic Purkinje cells.
neural transplantation; plasticity; olivocerebellar system; astroglia; microglia
Settore BIO/14 - Farmacologia
Settore BIO/16 - Anatomia Umana
1-gen-1994
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/347942
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 36
social impact