We study closed topological 2n-dimensional manifolds M with poly-surface fundamental groups. We prove that if M is simple homotopy equivalent to the total space E of a Y-bundle over a closed aspherical surface, where Y is a closed aspherical n-manifold, then M is s-cobordant to E. This extends a well-known 4-dimensional result of Hillman in [14] to higher dimensions. Our proof is different from that of the quoted paper: we use Mayer-Vietoris techniques and the properties of the L-theory assembly maps for such bundles.

Manifolds with poly-surface fundamental groups / A. Cavicchioli, F. Hegenbarth, F. Spaggiari. - In: MONATSHEFTE FÜR MATHEMATIK. - ISSN 0026-9255. - 148:3(2006 Jul), pp. 181-193.

Manifolds with poly-surface fundamental groups

F. Hegenbarth;
2006

Abstract

We study closed topological 2n-dimensional manifolds M with poly-surface fundamental groups. We prove that if M is simple homotopy equivalent to the total space E of a Y-bundle over a closed aspherical surface, where Y is a closed aspherical n-manifold, then M is s-cobordant to E. This extends a well-known 4-dimensional result of Hillman in [14] to higher dimensions. Our proof is different from that of the quoted paper: we use Mayer-Vietoris techniques and the properties of the L-theory assembly maps for such bundles.
topological manifolds; bundles; simple homotopy type; s-cobordism; assembly map; surgery obstructions; L-theory; algebraic K-theory
Settore MAT/03 - Geometria
lug-2006
Article (author)
File in questo prodotto:
File Dimensione Formato  
Cavicchioli2006_Article_ManifoldsWithPoly-SurfaceFunda.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 122.55 kB
Formato Adobe PDF
122.55 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/34423
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact