The electroneutral Cl(-)/HCO(3)(-) exchange, present at the apical membrane of rabbit gallbladder epithelium, apparently is converted into a stilbene- and dipyridamole-sensitive, nonrectifying, approximately 5-pS anion channel after the exchange is directly inhibited (inhibitors tested: hydrochlorothiazide (HCTZ), phlorizin, phenylglyoxal and diphenylamine-2-carboxylic acid (DPC)). In intact tissue, in the absence of CO(2)/HCO(3)(-) in the media, the opening of these channels causes an approximately 7-mV depolarization of the apical membrane. This has been shown to be a constant index of the total Cl(-) conductance (G(Cl)) activated. The effect of exogenous and endogenous CO(2)/HCO(3)(-) on the depolarization has now been investigated in the intact tissue by conventional microelectrodes. The anion exchange has been measured radiochemically. The presence of exogenous or endogenous CO(2)/HCO(3)(-) reduces the depolarization induced by HCTZ, phlorizin and DPC from approximately 7 to 3 mV, but 10(-4) mol/l acetazolamide restores the full depolarization. Response time, S(0.5) and Hill number are unchanged in each case. The way of bicarbonate replacement is irrelevant. The depolarization generated by phenylglyoxal, which covalently binds to the transport site of the exchanger and prevents HCO(3)(-) binding, is unaffected by CO(2)/HCO(3)(-) presence. HCO(3)(-) binding to the transport site is suggested to partially hinder the conversion of the exchanger into the channel.

Increase in intrinsic anion conductance upon inhibition of the electroneutral Cl-/HCO3- exchanger: effect of CO2/HCO3- / D. Cremaschi, C.E.H. Porta, C.M.E. Sironi. - In: BIOELECTROCHEMISTRY. - ISSN 1567-5394. - 54:2(2001), pp. 137-143.

Increase in intrinsic anion conductance upon inhibition of the electroneutral Cl-/HCO3- exchanger: effect of CO2/HCO3-

D. Cremaschi
Primo
;
C.E.H. Porta
Secondo
;
C.M.E. Sironi
Ultimo
2001

Abstract

The electroneutral Cl(-)/HCO(3)(-) exchange, present at the apical membrane of rabbit gallbladder epithelium, apparently is converted into a stilbene- and dipyridamole-sensitive, nonrectifying, approximately 5-pS anion channel after the exchange is directly inhibited (inhibitors tested: hydrochlorothiazide (HCTZ), phlorizin, phenylglyoxal and diphenylamine-2-carboxylic acid (DPC)). In intact tissue, in the absence of CO(2)/HCO(3)(-) in the media, the opening of these channels causes an approximately 7-mV depolarization of the apical membrane. This has been shown to be a constant index of the total Cl(-) conductance (G(Cl)) activated. The effect of exogenous and endogenous CO(2)/HCO(3)(-) on the depolarization has now been investigated in the intact tissue by conventional microelectrodes. The anion exchange has been measured radiochemically. The presence of exogenous or endogenous CO(2)/HCO(3)(-) reduces the depolarization induced by HCTZ, phlorizin and DPC from approximately 7 to 3 mV, but 10(-4) mol/l acetazolamide restores the full depolarization. Response time, S(0.5) and Hill number are unchanged in each case. The way of bicarbonate replacement is irrelevant. The depolarization generated by phenylglyoxal, which covalently binds to the transport site of the exchanger and prevents HCO(3)(-) binding, is unaffected by CO(2)/HCO(3)(-) presence. HCO(3)(-) binding to the transport site is suggested to partially hinder the conversion of the exchanger into the channel.
Acetazolamide; Anion channel; Diphenylamine-2-carboxylic acid; Hydrochlorothiazide; Phenylglyoxal; Phlorizin
Settore BIO/09 - Fisiologia
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/34341
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact