The aim of this work is to study the properties of positive smooth solutions of nonlinear equations on a noncompact Riemannian manifold with (possibly empty or noncompact) smooth boundary, and nonlinear boundary conditions of mixed type (Dirichlet-Neumann). In particular we concentrate on two models meaningful for the applications in Geometry and General Relativity, respectively the Yamabe-type equations and the Lichnerowicz-type equations.

SEMILINEAR ELLIPTIC EQUATIONS ON COMPLETE MANIFOLDS WITH BOUNDARY WITH SOME APPLICATIONS TO GEOMETRY AND GENERAL RELATIVITY / G. Albanese ; relatore: M. Rigoli ; coordinatore: L. Van Geemen. - : . DIPARTIMENTO DI MATEMATICA "FEDERIGO ENRIQUES", 2015 Dec 09. ((28. ciclo, Anno Accademico 2015. [10.13130/g-albanese_phd2015-12-09].

SEMILINEAR ELLIPTIC EQUATIONS ON COMPLETE MANIFOLDS WITH BOUNDARY WITH SOME APPLICATIONS TO GEOMETRY AND GENERAL RELATIVITY

G. Albanese
2015-12-09

Abstract

The aim of this work is to study the properties of positive smooth solutions of nonlinear equations on a noncompact Riemannian manifold with (possibly empty or noncompact) smooth boundary, and nonlinear boundary conditions of mixed type (Dirichlet-Neumann). In particular we concentrate on two models meaningful for the applications in Geometry and General Relativity, respectively the Yamabe-type equations and the Lichnerowicz-type equations.
RIGOLI, MARCO
VAN GEEMEN, LAMBERTUS
Settore MAT/03 - Geometria
Settore MAT/05 - Analisi Matematica
SEMILINEAR ELLIPTIC EQUATIONS ON COMPLETE MANIFOLDS WITH BOUNDARY WITH SOME APPLICATIONS TO GEOMETRY AND GENERAL RELATIVITY / G. Albanese ; relatore: M. Rigoli ; coordinatore: L. Van Geemen. - : . DIPARTIMENTO DI MATEMATICA "FEDERIGO ENRIQUES", 2015 Dec 09. ((28. ciclo, Anno Accademico 2015. [10.13130/g-albanese_phd2015-12-09].
Doctoral Thesis
File in questo prodotto:
File Dimensione Formato  
phd_unimi_R09932.pdf

embargo fino al 26/05/2016

Tipologia: Tesi di dottorato completa
Dimensione 731.06 kB
Formato Adobe PDF
731.06 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/339117
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact