Abstract: Self-assembling DNA-nanostars are ideal candidates to explore equilibrium gelation in systems composed of limited-valence particles. We present here a light scattering study of the dynamics in a trivalent DNA-nanostars equilibrium gel and of its dependence on ionic strength and concentration. Reversible bonds between different nanostars, whose formation is sensitively dependent on temperature, concentration and ionic strength, are provided by complementary DNA sticky ends. We find that the decay of the density correlations is described by a two-step relaxation process characterised by: i) a slow time scale that varies over nearly four orders of magnitude in a temperature window of less than 30 degrees; ii) an increase of the amplitude (the so-called non-ergodicity factor) of the slow relaxation. The slow process follows an Arrhenius law with temperature. We observe that the activation enthalpy does not depend on the ionic strength and that the dependence of the relaxation time on the ionic strength can be rationalized in terms of the free-energy cost of forming a sticky-end duplex. Finally, we observe that dynamics is insensitive to nanostar concentration, in full agreement with the predicted behaviour in equilibrium gels. Graphical abstract: [Figure not available: see fulltext.]

Equilibrium gels of trivalent DNA-nanostars : effect of the ionic strength on the dynamics / F. Bomboi, S. Biffi, R. Cerbino, T. Bellini, F. Bordi, F. Sciortino. - In: THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER. - ISSN 1292-8941. - 38:6(2015), pp. 64.1-64.8.

Equilibrium gels of trivalent DNA-nanostars : effect of the ionic strength on the dynamics

S. Biffi
Secondo
;
R. Cerbino;T. Bellini;
2015

Abstract

Abstract: Self-assembling DNA-nanostars are ideal candidates to explore equilibrium gelation in systems composed of limited-valence particles. We present here a light scattering study of the dynamics in a trivalent DNA-nanostars equilibrium gel and of its dependence on ionic strength and concentration. Reversible bonds between different nanostars, whose formation is sensitively dependent on temperature, concentration and ionic strength, are provided by complementary DNA sticky ends. We find that the decay of the density correlations is described by a two-step relaxation process characterised by: i) a slow time scale that varies over nearly four orders of magnitude in a temperature window of less than 30 degrees; ii) an increase of the amplitude (the so-called non-ergodicity factor) of the slow relaxation. The slow process follows an Arrhenius law with temperature. We observe that the activation enthalpy does not depend on the ionic strength and that the dependence of the relaxation time on the ionic strength can be rationalized in terms of the free-energy cost of forming a sticky-end duplex. Finally, we observe that dynamics is insensitive to nanostar concentration, in full agreement with the predicted behaviour in equilibrium gels. Graphical abstract: [Figure not available: see fulltext.]
No
English
Soft Matter: Colloids and Nanoparticles; Materials Science (all); Surfaces and Interfaces; Chemistry (all); Biophysics; Biotechnology
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
Articolo
Esperti anonimi
Ricerca di base
Pubblicazione scientifica
2015
EDP
38
6
64
1
8
8
Pubblicato
Periodico con rilevanza internazionale
scopus
crossref
pubmed
NON aderisco
info:eu-repo/semantics/article
Equilibrium gels of trivalent DNA-nanostars : effect of the ionic strength on the dynamics / F. Bomboi, S. Biffi, R. Cerbino, T. Bellini, F. Bordi, F. Sciortino. - In: THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER. - ISSN 1292-8941. - 38:6(2015), pp. 64.1-64.8.
none
Prodotti della ricerca::01 - Articolo su periodico
6
262
Article (author)
si
F. Bomboi, S. Biffi, R. Cerbino, T. Bellini, F. Bordi, F. Sciortino
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/337282
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 27
social impact