The doctoral thesis deals with a novel methodology of looking and processing electroencephalographic (EEG) data. The first part deals with real-time brain stimulation in the form of a sonified neurofeedback therapy derived from a clinically comparable portable, 4-channel EEG system. The therapy aims to provide an effective management for symptoms of the Autism Spectrum Disorder (ASD). ASD is characterized with a high level of delta electroencephalographic waveform levels, while alpha and beta prove to be present at lower levels especially in the frontal-temporal regions. The treatment aims at lowering delta waves and promoting alpha and beta waveforms. The second part of the thesis focuses on using EEG data in the prediction of epileptic seizures. With the help of custom built algorithms and neural networks, an effective prediction of an epileptic seizure can be achieved.

NOVEL COMPUTATIONAL ELECTROENCEPHALOGRAPHIC (EEG) METHODOLOGIES FOR AUTISM MANAGEMENT AND EPILEPTIC SEIZURE PREDICTION / A. Attard Trevisan ; supervisor: P. Cavallari ; coordinatore: M. Mazzanti. DIPARTIMENTO DI FISIOPATOLOGIA MEDICO-CHIRURGICA E DEI TRAPIANTI, 2015 Dec 02. 28. ciclo, Anno Accademico 2015. [10.13130/attard-trevisan-adrian_phd2015-12-02].

NOVEL COMPUTATIONAL ELECTROENCEPHALOGRAPHIC (EEG) METHODOLOGIES FOR AUTISM MANAGEMENT AND EPILEPTIC SEIZURE PREDICTION

A. ATTARD TREVISAN
2015

Abstract

The doctoral thesis deals with a novel methodology of looking and processing electroencephalographic (EEG) data. The first part deals with real-time brain stimulation in the form of a sonified neurofeedback therapy derived from a clinically comparable portable, 4-channel EEG system. The therapy aims to provide an effective management for symptoms of the Autism Spectrum Disorder (ASD). ASD is characterized with a high level of delta electroencephalographic waveform levels, while alpha and beta prove to be present at lower levels especially in the frontal-temporal regions. The treatment aims at lowering delta waves and promoting alpha and beta waveforms. The second part of the thesis focuses on using EEG data in the prediction of epileptic seizures. With the help of custom built algorithms and neural networks, an effective prediction of an epileptic seizure can be achieved.
2-dic-2015
Settore BIO/09 - Fisiologia
CAVALLARI, PAOLO
MAZZANTI, MICHELE
Doctoral Thesis
NOVEL COMPUTATIONAL ELECTROENCEPHALOGRAPHIC (EEG) METHODOLOGIES FOR AUTISM MANAGEMENT AND EPILEPTIC SEIZURE PREDICTION / A. Attard Trevisan ; supervisor: P. Cavallari ; coordinatore: M. Mazzanti. DIPARTIMENTO DI FISIOPATOLOGIA MEDICO-CHIRURGICA E DEI TRAPIANTI, 2015 Dec 02. 28. ciclo, Anno Accademico 2015. [10.13130/attard-trevisan-adrian_phd2015-12-02].
File in questo prodotto:
File Dimensione Formato  
phd_unimi_R10239.pdf

accesso aperto

Descrizione: Tesi di dottorato
Tipologia: Tesi di dottorato completa
Dimensione 19.9 MB
Formato Adobe PDF
19.9 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/333759
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact