Shiga toxin (Stx)-producing Escherichia coli is the offending agent of postdiarrhea-associated hemolytic uremic syndrome (HUS), a disorder of glomerular ischemic damage and widespread microvascular thrombosis. We previously documented that Stx induces glomerular complement activation, generating C3a responsible for microvascular thrombosis in experimental HUS. Here, we show that the presence of C3 deposits on podocytes is associated with podocyte damage and loss in HUS mice generated by the coinjection of Stx2 and LPS. Because podocyte adhesion to the glomerular basement membrane is mediated by integrins, the relevance of integrin-linked kinase (ILK) signals in podocyte dysfunction was evaluated. Podocyte expression of ILK increased after the injection of Stx2/LPS and preceded the upregulation of Snail and downregulation of nephrin and a-actinin-4. Factor B deficiency or pretreatment with an inhibitory antibody to factor B protected mice against Stx2/LPS-induced podocyte dysregulation. Similarly, pretreatment with aC3a receptor antagonist limited podocyte loss and changes in ILK, Snail, and a-actinin-4 expression. In cultured podocytes, treatment with C3a reduced a-actinin-4 expression and promoted ILK-dependent nuclear expression of Snail and cell motility. These results suggest that Stx-induced activation of the alternative pathway of complement and generation of C3a promotes ILK signaling, leading to podocyte dysfunction and loss in Stx-HUS.

Shiga toxin promotes podocyte injury in experimental hemolytic uremic syndrome via activation of the alternative pathway of complement / M. Locatelli, S. Buelli, A. Pezzotta, D. Corna, L. Perico, S. Tomasoni, D. Rottoli, P. Rizzo, D. Conti, J.M. Thurman, G. Remuzzi, C. Zoja, M. Morigi. - In: JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY. - ISSN 1046-6673. - 25:8(2014), pp. 1786-1798.

Shiga toxin promotes podocyte injury in experimental hemolytic uremic syndrome via activation of the alternative pathway of complement

G. Remuzzi;
2014

Abstract

Shiga toxin (Stx)-producing Escherichia coli is the offending agent of postdiarrhea-associated hemolytic uremic syndrome (HUS), a disorder of glomerular ischemic damage and widespread microvascular thrombosis. We previously documented that Stx induces glomerular complement activation, generating C3a responsible for microvascular thrombosis in experimental HUS. Here, we show that the presence of C3 deposits on podocytes is associated with podocyte damage and loss in HUS mice generated by the coinjection of Stx2 and LPS. Because podocyte adhesion to the glomerular basement membrane is mediated by integrins, the relevance of integrin-linked kinase (ILK) signals in podocyte dysfunction was evaluated. Podocyte expression of ILK increased after the injection of Stx2/LPS and preceded the upregulation of Snail and downregulation of nephrin and a-actinin-4. Factor B deficiency or pretreatment with an inhibitory antibody to factor B protected mice against Stx2/LPS-induced podocyte dysregulation. Similarly, pretreatment with aC3a receptor antagonist limited podocyte loss and changes in ILK, Snail, and a-actinin-4 expression. In cultured podocytes, treatment with C3a reduced a-actinin-4 expression and promoted ILK-dependent nuclear expression of Snail and cell motility. These results suggest that Stx-induced activation of the alternative pathway of complement and generation of C3a promotes ILK signaling, leading to podocyte dysfunction and loss in Stx-HUS.
integrin-linked kinase; enterohemorrhagic escherichia-coli; glomerular epithelial-cells; slit diaphragm; C3A receptor; stec-hus; factor-B; expression; alpha-actinin-4; eculizumab
Settore MED/14 - Nefrologia
2014
Article (author)
File in questo prodotto:
File Dimensione Formato  
1786.full.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 3.32 MB
Formato Adobe PDF
3.32 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/330196
Citazioni
  • ???jsp.display-item.citation.pmc??? 23
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 42
social impact