Human papilloma virus (HPV)-16 is the prevalent genotype associated with cervical tumours. Virus-like-particle (VLP)-based vaccines have proven to be effective in limiting new infections of high-risk HPVs, but their high cost has hampered their use, especially in the poor developing countries. Avipox-based recombinants are replication-restricted to avian species and represent efficient and safe vectors also for immunocompromised hosts, as they can elicit a complete immune response. A new fowlpox virus recombinant encoding HPV-L1 (FPL1) was engineered and evaluated side-by-side with a FP recombinant co-expressing L1 and green fluorescent protein (FPL1GFP) for correct expression of L1 in vitro in different cell lines, as confirmed by Western blotting, immunofluorescence, real-time PCR, and electron microscopy. Mice were also immunised to determine its immunogenicity. Here, we demonstrate that the FPL1 recombinant better expresses L1 in the absence of GFP, correctly assembles structured capsomers into VLPs, and elicits an immune response in a preclinical animal model. To our knowledge, this is the first report of HPV VLPs assembled in eukaryotic cells using an avipox recombinant.
The L1 protein of human papilloma virus 16 expressed by a fowlpox virus recombinant can assemble into virus-like particles in mammalian cell lines but elicits a non-neutralising humoral response / M. Bissa, C. Zanotto, S. Pacchioni, L. Volonté, A. Venuti, D. Lembo, C. De Giuli Morghen, A. Radaelli. - In: ANTIVIRAL RESEARCH. - ISSN 0166-3542. - 116:(2015 Apr), pp. 67-75. [10.1016/j.antiviral.2015.01.012]
The L1 protein of human papilloma virus 16 expressed by a fowlpox virus recombinant can assemble into virus-like particles in mammalian cell lines but elicits a non-neutralising humoral response
M. BissaPrimo
;C. ZanottoSecondo
;S. Pacchioni;L. Volonté;C. De Giuli MorghenPenultimo
;A. RadaelliUltimo
2015
Abstract
Human papilloma virus (HPV)-16 is the prevalent genotype associated with cervical tumours. Virus-like-particle (VLP)-based vaccines have proven to be effective in limiting new infections of high-risk HPVs, but their high cost has hampered their use, especially in the poor developing countries. Avipox-based recombinants are replication-restricted to avian species and represent efficient and safe vectors also for immunocompromised hosts, as they can elicit a complete immune response. A new fowlpox virus recombinant encoding HPV-L1 (FPL1) was engineered and evaluated side-by-side with a FP recombinant co-expressing L1 and green fluorescent protein (FPL1GFP) for correct expression of L1 in vitro in different cell lines, as confirmed by Western blotting, immunofluorescence, real-time PCR, and electron microscopy. Mice were also immunised to determine its immunogenicity. Here, we demonstrate that the FPL1 recombinant better expresses L1 in the absence of GFP, correctly assembles structured capsomers into VLPs, and elicits an immune response in a preclinical animal model. To our knowledge, this is the first report of HPV VLPs assembled in eukaryotic cells using an avipox recombinant.File | Dimensione | Formato | |
---|---|---|---|
Bissa_Antiv_Res_2015.pdf
accesso riservato
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
130.29 kB
Formato
Adobe PDF
|
130.29 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1-s2.0-S016635421500025X-main.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
1.35 MB
Formato
Adobe PDF
|
1.35 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.