Cytoglobin is a recently discovered hemeprotein belonging to the globin superfamily together with hemoglobin, myoglobin and neuroglobin. Although distributed in almost all human tissues, cytoglobin has not been ascribed a specific function. Human cytoglobin is composed of 190 amino acid residues. Sequence alignments show that a protein core region (about 150 residues) is structurally related to hemoglobin and myoglobin, being complemented by about 20 extra residues both on the N and C termini. In the absence of exogenous ligands (e.g. O2), the cytoglobin distal HisE7 residue is coordinated to the heme Fe atom, thus decreasing the ligand affinity. The crystal structure of human cytoglobin (2.1 A resolution, 21.3% R-factor) highlights a three-over-three alpha-helical globin fold, covering residues 18-171; the 1-17 N-terminal, and the 172-190 C-terminal residue segments are disordered in both molecules of the crystal asymmetric unit. Heme hexa-coordination is evident in one of the two cytoglobin chains, whereas alternate conformation for the heme distal region, achieving partial heme penta-coordination, is observed in the other. Human cytoglobin displays a large apolar protein matrix cavity, next to the heme, not related to the myoglobin cavities recognized as temporary ligand docking stations. The cavity, which may provide a heme ligand diffusion pathway, is connected to the external space through a narrow tunnel nestled between the globin G and H helices.

Crystal structure of cytoglobin: the fourth globin type discovered in man displays heme hexa-coordination / D. de Sanctis, S. Dewilde, A. Pesce, L. Moens, P. Ascenzi, T. Hankeln, T. Burmester, M. Bolognesi. - In: JOURNAL OF MOLECULAR BIOLOGY. - ISSN 0022-2836. - 336:4(2004 Feb), pp. 917-927.

Crystal structure of cytoglobin: the fourth globin type discovered in man displays heme hexa-coordination

M. Bolognesi
Ultimo
2004

Abstract

Cytoglobin is a recently discovered hemeprotein belonging to the globin superfamily together with hemoglobin, myoglobin and neuroglobin. Although distributed in almost all human tissues, cytoglobin has not been ascribed a specific function. Human cytoglobin is composed of 190 amino acid residues. Sequence alignments show that a protein core region (about 150 residues) is structurally related to hemoglobin and myoglobin, being complemented by about 20 extra residues both on the N and C termini. In the absence of exogenous ligands (e.g. O2), the cytoglobin distal HisE7 residue is coordinated to the heme Fe atom, thus decreasing the ligand affinity. The crystal structure of human cytoglobin (2.1 A resolution, 21.3% R-factor) highlights a three-over-three alpha-helical globin fold, covering residues 18-171; the 1-17 N-terminal, and the 172-190 C-terminal residue segments are disordered in both molecules of the crystal asymmetric unit. Heme hexa-coordination is evident in one of the two cytoglobin chains, whereas alternate conformation for the heme distal region, achieving partial heme penta-coordination, is observed in the other. Human cytoglobin displays a large apolar protein matrix cavity, next to the heme, not related to the myoglobin cavities recognized as temporary ligand docking stations. The cavity, which may provide a heme ligand diffusion pathway, is connected to the external space through a narrow tunnel nestled between the globin G and H helices.
English
cytoglobin ; histoglobin ; heme hexa-coordination ; human globin ; protein structure
Settore BIO/10 - Biochimica
Articolo
Sì, ma tipo non specificato
Pubblicazione scientifica
feb-2004
Academic Press
336
4
917
927
11
Pubblicato
Periodico con rilevanza internazionale
Aderisco
info:eu-repo/semantics/article
Crystal structure of cytoglobin: the fourth globin type discovered in man displays heme hexa-coordination / D. de Sanctis, S. Dewilde, A. Pesce, L. Moens, P. Ascenzi, T. Hankeln, T. Burmester, M. Bolognesi. - In: JOURNAL OF MOLECULAR BIOLOGY. - ISSN 0022-2836. - 336:4(2004 Feb), pp. 917-927.
reserved
Prodotti della ricerca::01 - Articolo su periodico
8
262
Article (author)
si
D. de Sanctis, S. Dewilde, A. Pesce, L. Moens, P. Ascenzi, T. Hankeln, T. Burmester, M. Bolognesi
File in questo prodotto:
File Dimensione Formato  
Cryst_Struct_2004_final.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 5.72 MB
Formato Adobe PDF
5.72 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/32909
Citazioni
  • ???jsp.display-item.citation.pmc??? 30
  • Scopus 155
  • ???jsp.display-item.citation.isi??? 147
social impact