The toxicity of herbicide Paraquat (PQ, 1-1'-dimethyl-4,4'bipyridylium dichloride) in animal cells is related to its rapid reduction and instantaneous reoxidation to produce the reactive oxygen species. Recently, the PQ evaluation with the Frog Embryo Teratogenesis Assay-Xenopus (FETAX) showed its high embryotoxicity. Supposing that the embryos' death was due to PQ-related oxidative damage, we used ascorbic acid (AA), a well known antioxidant, to reduce the PQ embryotoxicity in Xenopus laevis. Embryos were exposed from stage 8 to 47 to 0.1 mg/l PQ alone, and to PQ with AA concentrations ranging from 20 to 200 mg/l, using the FETAX procedure. PQ caused 72.2% mortality, while 17.1% of surviving larvae were affected by abnormal tail flexure. The PQ mortality percentages were reduced in a clear concentration-response by up to 15.2% in the group exposed to PQ with 200 mg/l AA. The histopathologic diagnoses revealed abnormal notochord flexure coupled with vesiculated, pear-shaped myocytes only in the PQ group. After embryo exposure to PQ with 200 mg/l AA, restoration of normal axial tail structures was evident. In conclusion, PQ embryotoxicity in X. laevis was most likely due to oxidative damage that was drastically reduced by AA.

Reduction in paraquat embryotoxicity by ascorbic acid in Xenopus laevis / C. Vismara, G. Vailati, R. Bacchetta. - In: AQUATIC TOXICOLOGY. - ISSN 0166-445X. - 51:3(2001), pp. 293-303.

Reduction in paraquat embryotoxicity by ascorbic acid in Xenopus laevis

C. Vismara
;
G. Vailati
Secondo
;
R. Bacchetta
Ultimo
2001

Abstract

The toxicity of herbicide Paraquat (PQ, 1-1'-dimethyl-4,4'bipyridylium dichloride) in animal cells is related to its rapid reduction and instantaneous reoxidation to produce the reactive oxygen species. Recently, the PQ evaluation with the Frog Embryo Teratogenesis Assay-Xenopus (FETAX) showed its high embryotoxicity. Supposing that the embryos' death was due to PQ-related oxidative damage, we used ascorbic acid (AA), a well known antioxidant, to reduce the PQ embryotoxicity in Xenopus laevis. Embryos were exposed from stage 8 to 47 to 0.1 mg/l PQ alone, and to PQ with AA concentrations ranging from 20 to 200 mg/l, using the FETAX procedure. PQ caused 72.2% mortality, while 17.1% of surviving larvae were affected by abnormal tail flexure. The PQ mortality percentages were reduced in a clear concentration-response by up to 15.2% in the group exposed to PQ with 200 mg/l AA. The histopathologic diagnoses revealed abnormal notochord flexure coupled with vesiculated, pear-shaped myocytes only in the PQ group. After embryo exposure to PQ with 200 mg/l AA, restoration of normal axial tail structures was evident. In conclusion, PQ embryotoxicity in X. laevis was most likely due to oxidative damage that was drastically reduced by AA.
paraquat; oxidative damage; FETAX; embryotoxicity; ascorbic acid; histology
Settore BIO/05 - Zoologia
Settore BIO/06 - Anatomia Comparata e Citologia
Settore BIO/07 - Ecologia
2001
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0166445X0000120X-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/328555
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 18
social impact