Lombardy in Italy has been selected as a case study to evaluate the capability of the QuikSCAT - Dense Sampling Method (QSCAT-DSM) data in delineating urban extent, estimating rate of urban changes, and assessing aquifer vulnerability, in particular to investigate the relationship between land-use changes and groundwater contamination. QSCAT-DSM data represent an innovative approach to delineate urban and interurban areas with satellite scatterometer data. Radar backscatter acquired by the SeaWinds scatterometer aboard the QSCAT satellite together with the DSM are used to identify and map surface features at a posting scale of about 1 km2. Through the spatial statistical methods Weight of Evidence (WofE), both urban changes given by QSCAT-DSM data and population changes in the decade of the 2000's have been correlated to nitrate concentration trend in groundwater in the same time period. Both analyses based on urban change and on population change lead to the same result: urban nitrate sources in Lombardy increase the level of nitrate concentration in groundwater, indicating a degradation of the water quality. Moreover, QSCAT-DSM data proved to be a reliable tool for evaluating urban changes continuously without a temporal or spatial gap, and to be a strategic variable allowing the assessment of groundwater vulnerability consistently throughout the decadal time scale.
Use of scatterometer data in groundwater vulnerability assessment / S. Stevenazzi, M. Masetti, S.V. Nghiem, A. Sorichetta. - In: RENDICONTI ONLINE DELLA SOCIETÀ GEOLOGICA ITALIANA. - ISSN 2035-8008. - 30:(2014), pp. 45-50. [10.3301/ROL.2014.10]
Use of scatterometer data in groundwater vulnerability assessment
S. Stevenazzi;M. Masetti;A. Sorichetta
2014
Abstract
Lombardy in Italy has been selected as a case study to evaluate the capability of the QuikSCAT - Dense Sampling Method (QSCAT-DSM) data in delineating urban extent, estimating rate of urban changes, and assessing aquifer vulnerability, in particular to investigate the relationship between land-use changes and groundwater contamination. QSCAT-DSM data represent an innovative approach to delineate urban and interurban areas with satellite scatterometer data. Radar backscatter acquired by the SeaWinds scatterometer aboard the QSCAT satellite together with the DSM are used to identify and map surface features at a posting scale of about 1 km2. Through the spatial statistical methods Weight of Evidence (WofE), both urban changes given by QSCAT-DSM data and population changes in the decade of the 2000's have been correlated to nitrate concentration trend in groundwater in the same time period. Both analyses based on urban change and on population change lead to the same result: urban nitrate sources in Lombardy increase the level of nitrate concentration in groundwater, indicating a degradation of the water quality. Moreover, QSCAT-DSM data proved to be a reliable tool for evaluating urban changes continuously without a temporal or spatial gap, and to be a strategic variable allowing the assessment of groundwater vulnerability consistently throughout the decadal time scale.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.