Post-transcriptional regulation exerted by neural-specific RNA-binding proteins plays a pivotal role in the development and maintenance of the nervous system. Neural ELAV proteins are key inducers of neuronal differentiation through the stabilization and/or translational enhancement of target transcripts bearing the AU-rich elements (AREs), whereas Musashi-1 maintains the stem cell proliferation state by acting as a translational repressor. Since the gene encoding Musashi-1 (Msi1) contains a conserved ARE in its 3' untranslated region, the authors focused on the possibility of a mechanistic relation between ELAV proteins and Musashi-1 in cell fate commitment. Colocalization of neural ELAV proteins with Musashi-1 clearly shows that ELAV proteins are expressed at early stages of neural commitment, whereas interaction studies demonstrate that neural ELAV proteins exert an ARE-dependent binding activity on the Msi1 mRNA. This binding activity has functional effects, since the ELAV protein family member HuD is able to stabilize the Msi1 ARE-contg. mRNA in a sequence-dependent way in a deadenylation/degrdn. assay. Furthermore activation of the neural ELAV proteins by phorbol esters in human SH-SY5Y cells is assocd. with an increase of Musashi-1 protein content in the cytoskeleton. The authors propose that ELAV RNA-binding proteins exert an important post-transcriptional control on Musashi-1 expression in the transition from proliferation to neural differentiation of stem/progenitor cells.
A role for the ELAV RNA-binding proteins in neural stem cells : stabilization of Msi1 mRNA / A. Ratti, C. Fallini, L. Cova, R. Fantozzi, C. Calzarossa, E. Zennaro, A. Pascale, A. Quattrone, V. Silani. - In: JOURNAL OF CELL SCIENCE. - ISSN 0021-9533. - 119:7(2006 Apr 01), pp. 1442-1452. [10.1242/jcs.02852]
A role for the ELAV RNA-binding proteins in neural stem cells : stabilization of Msi1 mRNA
A. Ratti
;C. FalliniSecondo
;C. Calzarossa;V. SilaniUltimo
2006
Abstract
Post-transcriptional regulation exerted by neural-specific RNA-binding proteins plays a pivotal role in the development and maintenance of the nervous system. Neural ELAV proteins are key inducers of neuronal differentiation through the stabilization and/or translational enhancement of target transcripts bearing the AU-rich elements (AREs), whereas Musashi-1 maintains the stem cell proliferation state by acting as a translational repressor. Since the gene encoding Musashi-1 (Msi1) contains a conserved ARE in its 3' untranslated region, the authors focused on the possibility of a mechanistic relation between ELAV proteins and Musashi-1 in cell fate commitment. Colocalization of neural ELAV proteins with Musashi-1 clearly shows that ELAV proteins are expressed at early stages of neural commitment, whereas interaction studies demonstrate that neural ELAV proteins exert an ARE-dependent binding activity on the Msi1 mRNA. This binding activity has functional effects, since the ELAV protein family member HuD is able to stabilize the Msi1 ARE-contg. mRNA in a sequence-dependent way in a deadenylation/degrdn. assay. Furthermore activation of the neural ELAV proteins by phorbol esters in human SH-SY5Y cells is assocd. with an increase of Musashi-1 protein content in the cytoskeleton. The authors propose that ELAV RNA-binding proteins exert an important post-transcriptional control on Musashi-1 expression in the transition from proliferation to neural differentiation of stem/progenitor cells.File | Dimensione | Formato | |
---|---|---|---|
Ratti A J Cell Science 2006.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
1.23 MB
Formato
Adobe PDF
|
1.23 MB | Adobe PDF | Visualizza/Apri |
Ratti A J Cell Science Suppl 2006.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
60.4 kB
Formato
Adobe PDF
|
60.4 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.