The functional effect of mutations near the intracellular mouth of the short viral Kcv potassium channel was studied by molecular dynamics simulations. As a model system we used the analogously mutated and truncated KirBac1.1, a channel with known crystal structure that shares genuine local sequence motifs with Kcv. By a novel simulated annealing methodology for structural averaging, information about the structure and dynamics of the intracellular mouth was extracted and complemented by Poisson-Boltzmann and 3D-RISM (reference interaction site model) integral equation theory for the determination of the K+ free energy surface. Besides the wild-type analogue of Kcv with its experimental reference activity (truncated KirBac1.1), two variants were studied: a deletion mutant where the N-terminus is further truncated by eight amino acids, showing inactivity in the Kcv reference system, and a point mutant where the kink-forming proline at position 13 is substituted by alanine, resulting in hyperactivity. The computations reveal that the change of activity is closely related to a hydrophilic intracellular constriction formed by the C-terminal residues of the monomers. Hyperactivity of the point mutant is correlated with both sterical and electrostatic factors, while inactivity of the deletion mutant is related to a loss of specific salt bridge patterns between the C- and N-terminus at the constriction and to the consequences for ion passage barriers, as revealed by integral equation theory. The cytosolic gate, however, is probably formed by the N-terminal segment up to the proline kink and not by the constriction. The results are compared with design principles found for other channels.

Molecular dynamics simulation of the cytosolic mouth in Kcv-type potassium channels / S. Tayefeh, T. Kloss, G. Thiel, B. Hertel, A. Moroni, S.M. Kast. - In: BIOCHEMISTRY. - ISSN 0006-2960. - 46:16(2007 Apr 24), pp. 4826-4839. [10.1021/bi602468r]

Molecular dynamics simulation of the cytosolic mouth in Kcv-type potassium channels

A. Moroni
Penultimo
;
2007

Abstract

The functional effect of mutations near the intracellular mouth of the short viral Kcv potassium channel was studied by molecular dynamics simulations. As a model system we used the analogously mutated and truncated KirBac1.1, a channel with known crystal structure that shares genuine local sequence motifs with Kcv. By a novel simulated annealing methodology for structural averaging, information about the structure and dynamics of the intracellular mouth was extracted and complemented by Poisson-Boltzmann and 3D-RISM (reference interaction site model) integral equation theory for the determination of the K+ free energy surface. Besides the wild-type analogue of Kcv with its experimental reference activity (truncated KirBac1.1), two variants were studied: a deletion mutant where the N-terminus is further truncated by eight amino acids, showing inactivity in the Kcv reference system, and a point mutant where the kink-forming proline at position 13 is substituted by alanine, resulting in hyperactivity. The computations reveal that the change of activity is closely related to a hydrophilic intracellular constriction formed by the C-terminal residues of the monomers. Hyperactivity of the point mutant is correlated with both sterical and electrostatic factors, while inactivity of the deletion mutant is related to a loss of specific salt bridge patterns between the C- and N-terminus at the constriction and to the consequences for ion passage barriers, as revealed by integral equation theory. The cytosolic gate, however, is probably formed by the N-terminal segment up to the proline kink and not by the constriction. The results are compared with design principles found for other channels.
Settore BIO/04 - Fisiologia Vegetale
24-apr-2007
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/31488
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 38
social impact