Limiting the development of secondary damage represents one of the major goals of neuroprotective therapies after spinal cord injury. Here, we demonstrate that specific JNK inhibition via a single intraperitoneal injection of the cell permeable peptide D-JNKI1 6 h after lesion improves locomotor recovery assessed by both the footprint and the BMS tests up to 4 months post-injury in mice. JNK inhibition prevents c-jun phosphorylation and caspase-3 cleavage, has neuroprotective effects and results in an increased sparing of white matter at the lesion site. Lastly, D-JNKI1 treated animals show a lower increase of erythrocyte extravasation and blood brain barrier permeability, thus indicating protection of the vascular system. In total, these results clearly point out JNK inhibition as a promising neuroprotective strategy for preventing the evolution of secondary damage after spinal cord injury.
Specific inhibition of the JNK pathway promotes locomotor recovery and neuroprotection after mouse spinal cord injury / M. Repici, X. Chen, M. Morel, M. Doulazmi, A. Sclip, V. Cannaya, P. Veglianese, R. Kraftsik, J. Mariani, T. Borsello, I. Dusart. - In: NEUROBIOLOGY OF DISEASE. - ISSN 0969-9961. - 46:3(2012 Jun), pp. 710-721.
Specific inhibition of the JNK pathway promotes locomotor recovery and neuroprotection after mouse spinal cord injury
T. BorselloPenultimo
;
2012
Abstract
Limiting the development of secondary damage represents one of the major goals of neuroprotective therapies after spinal cord injury. Here, we demonstrate that specific JNK inhibition via a single intraperitoneal injection of the cell permeable peptide D-JNKI1 6 h after lesion improves locomotor recovery assessed by both the footprint and the BMS tests up to 4 months post-injury in mice. JNK inhibition prevents c-jun phosphorylation and caspase-3 cleavage, has neuroprotective effects and results in an increased sparing of white matter at the lesion site. Lastly, D-JNKI1 treated animals show a lower increase of erythrocyte extravasation and blood brain barrier permeability, thus indicating protection of the vascular system. In total, these results clearly point out JNK inhibition as a promising neuroprotective strategy for preventing the evolution of secondary damage after spinal cord injury.| File | Dimensione | Formato | |
|---|---|---|---|
|
1-s2.0-S096999611200085X-main.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
1.95 MB
Formato
Adobe PDF
|
1.95 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




