Wound healing and ulcer management is a vast topic that stimulated clinical research due to its major socio economic impact on clinical practices. Last decade of research in clinical science has seen materials at microscale developments which significantly contributed to ulcer management and wound healing with their merits and limitations. The present review outlines the new materials at nanoscale that have been designed and manufactured to address the existing problems in wound care but comparatively less familiar to clinicians for tissue repair and ulcer management. Development in tissue engineering practices spanning from micro- to nano- dimension provided superior materials over traditional wound dressing materials mimicking tissue in vivo. Recent advances in material sciences and polymer chemistry have yielded an entire class of new nanomaterials, ranging from bioactive tissue scaffold to novel electrospun polymer and hydrogel for tissue repair and wound management. Nanoscale materials with biodegradable chemistries and molecular compositions assist wound healing as adhesive and bandages in specialized wound care. Moreover, new class of materials gives opportunity to engineer tissue substrate in vitro to support bio-responsive nanomedicine for wound healing. Soft nanomaterial design technology involving hydrogel and bio-scaffold revolutionized the wound management supplementing biophysical and biochemical considerations of tissue regeneration. In addition, this review addresses the immediate challenges and opportunities provided by nanoscale tissue engineering in designing synthetic biomaterials as instructive extracellular matrix (ECM) for tissue remodeling and morphogenesis.

Nanomaterials: new generation therapeutics in wound healing and tissue repair / V. Singh, A.S. Aditi, N. Gade, V. Tanushree, C. Lenardi, P. Milani. - In: CURRENT NANOSCIENCE. - ISSN 1573-4137. - 6:6(2010), pp. 577-586.

Nanomaterials: new generation therapeutics in wound healing and tissue repair

C. Lenardi
Penultimo
;
P. Milani
Ultimo
2010

Abstract

Wound healing and ulcer management is a vast topic that stimulated clinical research due to its major socio economic impact on clinical practices. Last decade of research in clinical science has seen materials at microscale developments which significantly contributed to ulcer management and wound healing with their merits and limitations. The present review outlines the new materials at nanoscale that have been designed and manufactured to address the existing problems in wound care but comparatively less familiar to clinicians for tissue repair and ulcer management. Development in tissue engineering practices spanning from micro- to nano- dimension provided superior materials over traditional wound dressing materials mimicking tissue in vivo. Recent advances in material sciences and polymer chemistry have yielded an entire class of new nanomaterials, ranging from bioactive tissue scaffold to novel electrospun polymer and hydrogel for tissue repair and wound management. Nanoscale materials with biodegradable chemistries and molecular compositions assist wound healing as adhesive and bandages in specialized wound care. Moreover, new class of materials gives opportunity to engineer tissue substrate in vitro to support bio-responsive nanomedicine for wound healing. Soft nanomaterial design technology involving hydrogel and bio-scaffold revolutionized the wound management supplementing biophysical and biochemical considerations of tissue regeneration. In addition, this review addresses the immediate challenges and opportunities provided by nanoscale tissue engineering in designing synthetic biomaterials as instructive extracellular matrix (ECM) for tissue remodeling and morphogenesis.
Hydrogels; Wound healing; Electrospinning
Settore FIS/01 - Fisica Sperimentale
2010
Article (author)
File in questo prodotto:
File Dimensione Formato  
160009.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 397.46 kB
Formato Adobe PDF
397.46 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/296580
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 43
social impact