As the number of sequenced genomes rapidly grows, Automated Prediction of gene Function (AFP) is now a challenging problem. Despite significant progresses in the last several years, the accuracy of gene function prediction still needs to be improved in order to be used effectively in practice. Two of the main issues of AFP problem are the imbalance of gene functional annotations and the 'multifunctional properties' of genes. While the former is a well studied problem in machine learning, the latter has recently emerged in bioinformatics and few studies have been carried out about it. Here we propose a method for AFP which appropriately handles the label imbalance characterizing biological taxonomies, and embeds in the model the property of some genes of being 'multifunctional'. We tested the method in predicting the functions of the Gene Ontology functional hierarchy for genes of yeast and fly model organisms, in a genome-wide approach. The achieved results show that cost-sensitive strategies and 'gene multifunctionality' can be combined to achieve significantly better results than the compared state-of-the-art algorithms for AFP.

Automated gene function prediction through gene multifunctionality in biological networks / M. Frasca. - In: NEUROCOMPUTING. - ISSN 0925-2312. - 162(2015 Aug 25), pp. 48-56.

Automated gene function prediction through gene multifunctionality in biological networks

M. Frasca
2015

Abstract

As the number of sequenced genomes rapidly grows, Automated Prediction of gene Function (AFP) is now a challenging problem. Despite significant progresses in the last several years, the accuracy of gene function prediction still needs to be improved in order to be used effectively in practice. Two of the main issues of AFP problem are the imbalance of gene functional annotations and the 'multifunctional properties' of genes. While the former is a well studied problem in machine learning, the latter has recently emerged in bioinformatics and few studies have been carried out about it. Here we propose a method for AFP which appropriately handles the label imbalance characterizing biological taxonomies, and embeds in the model the property of some genes of being 'multifunctional'. We tested the method in predicting the functions of the Gene Ontology functional hierarchy for genes of yeast and fly model organisms, in a genome-wide approach. The achieved results show that cost-sensitive strategies and 'gene multifunctionality' can be combined to achieve significantly better results than the compared state-of-the-art algorithms for AFP.
Biological networks; Cost-sensitive learning; Gene function prediction; Gene multifunctionality; Gene ranking; Hopfield networks
Settore INF/01 - Informatica
25-ago-2015
Article (author)
File in questo prodotto:
File Dimensione Formato  
Frasca.pdf

accesso aperto

Descrizione: Pre-print prima revisione
Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF Visualizza/Apri
1-s2.0-S0925231215004142-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/286356
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact