Bile acid metabolism plays an essential role in cholesterol homeostasis and is critical for the initiation of atherosclerotic disease. However, despite the recent advances, the molecular mechanisms whereby bile acids regulate gene transcription and cholesterol homeostasis in mammals still need further investigations. Here, we show that bile acids suppress transcription of the gene (CYP7A1) encoding cholesterol 7α-hydroxylase, the rate-limiting enzyme in bile acid biosynthesis, also through an unusual mechanism not involving the bile acid nuclear receptor, farnesoid X receptor. By performing cell-based reporter assays, protein/protein interaction, and chromatin immunoprecipitation assays, we demonstrate that bile acids impair the recruitment of peroxisome proliferator-activated receptor-γ coactivator-1α and cAMP response element-binding protein-binding protein by hepatocyte nuclear factor-4α, a master regulator of CYP7A1. We also show for the first time that bile acids inhibit transcription of the gene (PEPCK) encoding phosphoenolpyruvate carboxykinase, the rate-limiting enzyme in gluconeogenesis, through the same farnesoid X receptor-independent mechanism. Chromatin immunoprecipitation assay revealed that bile acid-induced dissociation of coactivators from hepatocyte nuclear factor-4α decreased the recruitment of RNA polymerase II to the core promoter and downstream in the 3′-untranslated regions of these two genes, reflecting the reduction of gene transcription. Finally, we found that Cyp7a1 expression was stimulated in fasted mice in parallel to Pepck, whereas the same genes were repressed by bile acids. Collectively, these results reveal a novel regulatory mechanism that controls gene transcription in response to extracellular stimuli and argue that the transcription regulation by bile acids of genes central to cholesterol and glucose metabolism should be viewed dynamically in the context of the fasted-to-fed cycle.

Coordinated control of cholesterol catabolism to bile acids and of gluconeogenesis via a novel mechanism of transcription regulation linked to the fasted-to-fed cycle / E. De Fabiani, N. Mitro, F. Gilardi, D. Caruso, G. Galli, M. Crestani. - In: THE JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 0021-9258. - 278:40(2003 Oct), pp. 39124-39132. [10.1074/jbc.M305079200]

Coordinated control of cholesterol catabolism to bile acids and of gluconeogenesis via a novel mechanism of transcription regulation linked to the fasted-to-fed cycle

E. De Fabiani
Primo
;
N. Mitro
Secondo
;
F. Gilardi;D. Caruso;G. Galli
Penultimo
;
M. Crestani
Ultimo
2003

Abstract

Bile acid metabolism plays an essential role in cholesterol homeostasis and is critical for the initiation of atherosclerotic disease. However, despite the recent advances, the molecular mechanisms whereby bile acids regulate gene transcription and cholesterol homeostasis in mammals still need further investigations. Here, we show that bile acids suppress transcription of the gene (CYP7A1) encoding cholesterol 7α-hydroxylase, the rate-limiting enzyme in bile acid biosynthesis, also through an unusual mechanism not involving the bile acid nuclear receptor, farnesoid X receptor. By performing cell-based reporter assays, protein/protein interaction, and chromatin immunoprecipitation assays, we demonstrate that bile acids impair the recruitment of peroxisome proliferator-activated receptor-γ coactivator-1α and cAMP response element-binding protein-binding protein by hepatocyte nuclear factor-4α, a master regulator of CYP7A1. We also show for the first time that bile acids inhibit transcription of the gene (PEPCK) encoding phosphoenolpyruvate carboxykinase, the rate-limiting enzyme in gluconeogenesis, through the same farnesoid X receptor-independent mechanism. Chromatin immunoprecipitation assay revealed that bile acid-induced dissociation of coactivators from hepatocyte nuclear factor-4α decreased the recruitment of RNA polymerase II to the core promoter and downstream in the 3′-untranslated regions of these two genes, reflecting the reduction of gene transcription. Finally, we found that Cyp7a1 expression was stimulated in fasted mice in parallel to Pepck, whereas the same genes were repressed by bile acids. Collectively, these results reveal a novel regulatory mechanism that controls gene transcription in response to extracellular stimuli and argue that the transcription regulation by bile acids of genes central to cholesterol and glucose metabolism should be viewed dynamically in the context of the fasted-to-fed cycle.
Settore BIO/10 - Biochimica
ott-2003
http://www.jbc.org/cgi/content/full/278/40/39124
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/28635
Citazioni
  • ???jsp.display-item.citation.pmc??? 50
  • Scopus 179
  • ???jsp.display-item.citation.isi??? 167
social impact