The scope of this paper is to offer an overview of the main results obtained by the authors in recent literature in connection with the introduction of a Delta formalism, ´a la Dirac-Schwartz, for random generalized functions (distributions) associated with random closed sets, having an integer Hausdorff dimension n lower than the full dimension d of the environment space Rd. A concept of absolute continuity of random closed sets arises in a natural way in terms of the absolute continuity of suitable mean content measures, with respect to the usual Lebesgue measure on Rd. Correspondingly mean geometric densities are introduced with respect to the usual Lebesgue measure; approximating sequences are provided, that are of interest for the estimation of mean geometric densities of lower dimensional random sets such as fibre processes, surface processes, etc. Many models in material science and in biomedicine include time evolution of random closed sets, describing birthand- growth processes; the Delta formalism provides a natural framework for deriving evolution equations for mean densities at all (integer) Hausdorff dimensions, in terms of the relevant kinetic parameters.

On mean densities of inhomogeneous geometric processes arising in material science and medicine / V. Capasso, E. Villa. - In: IMAGE ANALYSIS & STEREOLOGY. - ISSN 1580-3139. - 26:1(2007), pp. 23-36.

On mean densities of inhomogeneous geometric processes arising in material science and medicine

V. Capasso
Primo
;
E. Villa
Ultimo
2007

Abstract

The scope of this paper is to offer an overview of the main results obtained by the authors in recent literature in connection with the introduction of a Delta formalism, ´a la Dirac-Schwartz, for random generalized functions (distributions) associated with random closed sets, having an integer Hausdorff dimension n lower than the full dimension d of the environment space Rd. A concept of absolute continuity of random closed sets arises in a natural way in terms of the absolute continuity of suitable mean content measures, with respect to the usual Lebesgue measure on Rd. Correspondingly mean geometric densities are introduced with respect to the usual Lebesgue measure; approximating sequences are provided, that are of interest for the estimation of mean geometric densities of lower dimensional random sets such as fibre processes, surface processes, etc. Many models in material science and in biomedicine include time evolution of random closed sets, describing birthand- growth processes; the Delta formalism provides a natural framework for deriving evolution equations for mean densities at all (integer) Hausdorff dimensions, in terms of the relevant kinetic parameters.
Approximation Of Geometric Densities, Birth-and-growth Processes, Geometric Densities, Geometric Measure Theory, Random Distributions, Random Measures, Stochastic Geometry.
Settore MAT/06 - Probabilita' e Statistica Matematica
2007
http://www.wise-t.com/ias/article.php?id=196&year=2007&issue=3
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/28353
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? ND
social impact