A numerical approximation of the acoustic wave equation is presented. The spatial discretization is based on conforming spectral elements, whereas we use finite difference Newmark's explicit integration schemes for the temporal discretization. A rigorous stability analysis is developed for the discretized problem providing an upper bound for the time step At. We present several numerical results concerning stability and convergence properties of the proposed numerical methods.

Approximation of acoustic waves by explicit Newmark's schemes and spectral element methods / E. Zampieri, L.F. Pavarino. - In: JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS. - ISSN 0377-0427. - 185:2(2006), pp. 308-325. [10.1016/j.cam.2005.03.013]

Approximation of acoustic waves by explicit Newmark's schemes and spectral element methods

E. Zampieri;L.F. Pavarino
2006

Abstract

A numerical approximation of the acoustic wave equation is presented. The spatial discretization is based on conforming spectral elements, whereas we use finite difference Newmark's explicit integration schemes for the temporal discretization. A rigorous stability analysis is developed for the discretized problem providing an upper bound for the time step At. We present several numerical results concerning stability and convergence properties of the proposed numerical methods.
acoustic waves; spectral elements; Newmark's explicit schemes
Settore MAT/08 - Analisi Numerica
2006
Article (author)
File in questo prodotto:
File Dimensione Formato  
JCAM2006.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 266.54 kB
Formato Adobe PDF
266.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/28142
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 33
social impact