High molecular weight (HMW-A) adiponectin levels mirror alterations in glucose homeostasis better than medium (MMW-A) and low molecular weight (LMW-A) components. In 25 patients with wide-range extreme obesity (BMI 40-77â kg/m 2), we aimed to explore if improvements of multimeric adiponectin following 4-wk weight loss reflect baseline OGTT-derived insulin sensitivity (ISI OGTT) and disposition index (DI OGTT). Compared to 40 lean controls, adiponectin oligomers were lower in extreme obesity (p < 0.001) and, within this group, HMW-A levels were higher in insulin-sensitive (p < 0.05) than-resistant patients. In obese patients, short-term weight loss did not change total adiponectin levels and insulin resistance, while the distribution pattern of adiponectin oligomers changed due to significant increment of HMW-A (p < 0.01) and reduction of MMW-A (p < 0.05). By multivariate analysis, final HMW-A levels were significantly related to baseline ISI OGTT and final body weight (adjusted R2 = 0.41). Our data suggest that HMW adiponectin may reflect baseline insulin sensitivity appropriately in the context of extreme obesity. Especially, we documented that HMW-A is promptly responsive to short-term weight loss prior to changes in insulin resistance, by a magnitude that is proportioned to whole body insulin sensitivity. This may suggest an insulin sensitivity-dependent control operated by HMW-A on metabolic dynamics of patients with extreme obesity.
Inherent insulin sensitivity is a major determinant of multimeric adiponectin responsiveness to short-term weight loss in extreme obesity / S. Mai, G.E. Walker, A. Brunani, G. Guzzaloni, G. Grossi, A. Oldani, G. Aimaretti, M. Scacchi, P. Marzullo. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 4(2014 Jul), pp. 5803.1-5803.6. [10.1038/srep05803]
Inherent insulin sensitivity is a major determinant of multimeric adiponectin responsiveness to short-term weight loss in extreme obesity
M. ScacchiPenultimo
;
2014
Abstract
High molecular weight (HMW-A) adiponectin levels mirror alterations in glucose homeostasis better than medium (MMW-A) and low molecular weight (LMW-A) components. In 25 patients with wide-range extreme obesity (BMI 40-77â kg/m 2), we aimed to explore if improvements of multimeric adiponectin following 4-wk weight loss reflect baseline OGTT-derived insulin sensitivity (ISI OGTT) and disposition index (DI OGTT). Compared to 40 lean controls, adiponectin oligomers were lower in extreme obesity (p < 0.001) and, within this group, HMW-A levels were higher in insulin-sensitive (p < 0.05) than-resistant patients. In obese patients, short-term weight loss did not change total adiponectin levels and insulin resistance, while the distribution pattern of adiponectin oligomers changed due to significant increment of HMW-A (p < 0.01) and reduction of MMW-A (p < 0.05). By multivariate analysis, final HMW-A levels were significantly related to baseline ISI OGTT and final body weight (adjusted R2 = 0.41). Our data suggest that HMW adiponectin may reflect baseline insulin sensitivity appropriately in the context of extreme obesity. Especially, we documented that HMW-A is promptly responsive to short-term weight loss prior to changes in insulin resistance, by a magnitude that is proportioned to whole body insulin sensitivity. This may suggest an insulin sensitivity-dependent control operated by HMW-A on metabolic dynamics of patients with extreme obesity.| File | Dimensione | Formato | |
|---|---|---|---|
|
inherent.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
359.16 kB
Formato
Adobe PDF
|
359.16 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




