We study the dynamics of an infinite regular lattice of classical charged oscillators. Each individual oscillator is described as a point particle subject to a harmonic restoring potential, to the retarded electromagnetic field generated by all the other particles, and to the radiation reaction expressed according to the Lorentz–Dirac equation. Exact normal mode solutions, describing the propagation of plane electromagnetic waves through the lattice, are obtained for the complete linearized system of infinitely many oscillators. At variance with all the available results, our method is valid for any values of the frequency, or of the ratio between wavelength and lattice parameter. A remarkable feature is that the proper inclusion of radiation reaction in the dynamics of the individual oscillators does not give rise to any extinction coefficient for the global normal modes of the lattice. The dispersion relations resulting from our solution are numerically studied for the case of a simple cubic lattice. New predictions are obtained in this way about the behavior of the crystal at frequencies near the proper oscillation frequency of the dipoles.

Classical light dispersion theory in a regular lattice / M. Marino, A. Carati, L. Galgani. - In: ANNALS OF PHYSICS. - ISSN 0003-4916. - 322:4(2007), pp. 799-823.

Classical light dispersion theory in a regular lattice

M. Marino
Primo
;
A. Carati
Secondo
;
L. Galgani
Ultimo
2007

Abstract

We study the dynamics of an infinite regular lattice of classical charged oscillators. Each individual oscillator is described as a point particle subject to a harmonic restoring potential, to the retarded electromagnetic field generated by all the other particles, and to the radiation reaction expressed according to the Lorentz–Dirac equation. Exact normal mode solutions, describing the propagation of plane electromagnetic waves through the lattice, are obtained for the complete linearized system of infinitely many oscillators. At variance with all the available results, our method is valid for any values of the frequency, or of the ratio between wavelength and lattice parameter. A remarkable feature is that the proper inclusion of radiation reaction in the dynamics of the individual oscillators does not give rise to any extinction coefficient for the global normal modes of the lattice. The dispersion relations resulting from our solution are numerically studied for the case of a simple cubic lattice. New predictions are obtained in this way about the behavior of the crystal at frequencies near the proper oscillation frequency of the dipoles.
Settore MAT/07 - Fisica Matematica
2007
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/27356
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact