Purpose This study applied automatic feature detection on cine-magnetic resonance imaging (MRI) liver images in order to provide a prospective comparison between MRI-guided and surrogate-based tracking methods for motion-compensated liver radiation therapy. Methods and Materials In a population of 30 subjects (5 volunteers plus 25 patients), 2 oblique sagittal slices were acquired across the liver at high temporal resolution. An algorithm based on scale invariant feature transform (SIFT) was used to extract and track multiple features throughout the image sequence. The position of abdominal markers was also measured directly from the image series, and the internal motion of each feature was quantified through multiparametric analysis. Surrogate-based tumor tracking with a state-of-the-art external/internal correlation model was simulated. The geometrical tracking error was measured, and its correlation with external motion parameters was also investigated. Finally, the potential gain in tracking accuracy relying on MRI guidance was quantified as a function of the maximum allowed tracking error. Results An average of 45 features was extracted for each subject across the whole liver. The multi-parametric motion analysis reported relevant inter- and intrasubject variability, highlighting the value of patient-specific and spatially-distributed measurements. Surrogate-based tracking errors (relative to the motion amplitude) were were in the range 7% to 23% (1.02-3.57mm) and were significantly influenced by external motion parameters. The gain of MRI guidance compared to surrogate-based motion tracking was larger than 30% in 50% of the subjects when considering a 1.5-mm tracking error tolerance. Conclusions Automatic feature detection applied to cine-MRI allows detailed liver motion description to be obtained. Such information was used to quantify the performance of surrogate-based tracking methods and to provide a prospective comparison with respect to MRI-guided radiation therapy, which could support the definition of patient-specific optimal treatment strategies.

Magnetic resonance imaging-guided versus surrogate-based motion tracking in liver radiation therapy: a prospective comparative study / C. Paganelli, M. Seregni, G. Fattori, P. Summers, M. Bellomi, G. Baroni, M. Riboldi. - In: INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS. - ISSN 0360-3016. - 91:4(2015 Mar 15), pp. 840-848. [10.1016/j.ijrobp.2014.12.013]

Magnetic resonance imaging-guided versus surrogate-based motion tracking in liver radiation therapy: a prospective comparative study

M. Bellomi;
2015

Abstract

Purpose This study applied automatic feature detection on cine-magnetic resonance imaging (MRI) liver images in order to provide a prospective comparison between MRI-guided and surrogate-based tracking methods for motion-compensated liver radiation therapy. Methods and Materials In a population of 30 subjects (5 volunteers plus 25 patients), 2 oblique sagittal slices were acquired across the liver at high temporal resolution. An algorithm based on scale invariant feature transform (SIFT) was used to extract and track multiple features throughout the image sequence. The position of abdominal markers was also measured directly from the image series, and the internal motion of each feature was quantified through multiparametric analysis. Surrogate-based tumor tracking with a state-of-the-art external/internal correlation model was simulated. The geometrical tracking error was measured, and its correlation with external motion parameters was also investigated. Finally, the potential gain in tracking accuracy relying on MRI guidance was quantified as a function of the maximum allowed tracking error. Results An average of 45 features was extracted for each subject across the whole liver. The multi-parametric motion analysis reported relevant inter- and intrasubject variability, highlighting the value of patient-specific and spatially-distributed measurements. Surrogate-based tracking errors (relative to the motion amplitude) were were in the range 7% to 23% (1.02-3.57mm) and were significantly influenced by external motion parameters. The gain of MRI guidance compared to surrogate-based motion tracking was larger than 30% in 50% of the subjects when considering a 1.5-mm tracking error tolerance. Conclusions Automatic feature detection applied to cine-MRI allows detailed liver motion description to be obtained. Such information was used to quantify the performance of surrogate-based tracking methods and to provide a prospective comparison with respect to MRI-guided radiation therapy, which could support the definition of patient-specific optimal treatment strategies.
respiration-gated radiotherapy; internal lung motion; tumor tracking; linac system; MRI; transform; mobility; future
Settore MED/36 - Diagnostica per Immagini e Radioterapia
15-mar-2015
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0360301614044885-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 982.82 kB
Formato Adobe PDF
982.82 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/271591
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 40
social impact