Diffuse correlation spectroscopy (DCS) measurements in vivo recorded from rabbits' ocular fundus are presented. Despite the complexity of these ocular tissues, we provide a clear and simple demonstration of the DCS abilities to analyze variations in physiological quantities of clinical interest. Indeed, the reported experimental activities demonstrate that DCS can reveal both choroidal-flow and temperature variations and detect nano- and micro-aggregates in ocular fundus circulation. Such abilities can be of great interest both in fundamental research and practical clinical applications. The proposed measuring system can be useful in: (a) monitoring choroidal blood flow variations, (b) determining the end-point for photo-dynamic therapy and transpupillary thermo therapy and, (c) managing the dye injection and determining an end-point for dye-enhanced photothrombosis. Moreover, it could allow both diagnoses when the presence of nano- and micro-aggregates is related to specific diseases and verifying the effects of nanoparticle injection in nanomedicine. Even though the reported results demonstrate the applicability of DCS to investigate ocular fundus, a detailed and accurate investigation of the limits of detection is beyond the scope of this article.

In vivo diffuse correlation spectroscopy investigation of the ocular fundus / S. Cattini, G. Staurenghi, A. Gatti, L. Rovati. - In: JOURNAL OF BIOMEDICAL OPTICS. - ISSN 1083-3668. - 18:5(2013 May). [10.1117/1.JBO.18.5.057001]

In vivo diffuse correlation spectroscopy investigation of the ocular fundus

G. Staurenghi;
2013

Abstract

Diffuse correlation spectroscopy (DCS) measurements in vivo recorded from rabbits' ocular fundus are presented. Despite the complexity of these ocular tissues, we provide a clear and simple demonstration of the DCS abilities to analyze variations in physiological quantities of clinical interest. Indeed, the reported experimental activities demonstrate that DCS can reveal both choroidal-flow and temperature variations and detect nano- and micro-aggregates in ocular fundus circulation. Such abilities can be of great interest both in fundamental research and practical clinical applications. The proposed measuring system can be useful in: (a) monitoring choroidal blood flow variations, (b) determining the end-point for photo-dynamic therapy and transpupillary thermo therapy and, (c) managing the dye injection and determining an end-point for dye-enhanced photothrombosis. Moreover, it could allow both diagnoses when the presence of nano- and micro-aggregates is related to specific diseases and verifying the effects of nanoparticle injection in nanomedicine. Even though the reported results demonstrate the applicability of DCS to investigate ocular fundus, a detailed and accurate investigation of the limits of detection is beyond the scope of this article.
ophthalmology; optical devices; ocular blood flow; photo-dynamic therapy; transpupillary thermo therapy; dye-enhanced photothrombosis; nanoparticles; nanomedicine
Settore MED/30 - Malattie Apparato Visivo
mag-2013
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/266986
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact