Inflammatory stimuli drive a fine rearrangement of cell-specific chromatin determinants at cis-regulatory regions of inflammatory genes. Although a few determinants are known (i.e. H3K4me1 and Pu.1), a global picture of the enhancers’ molecular signature and how specific factors dynamically synergize during the inflammatory response remain incomplete. The aim of my thesis is the global characterization of the enhancers’ determinants and their dynamic profiling during inflammatory response. I addressed this issue by employing the chromatin proteomics approach (ChroP), which combines chromatin immunoprecipitation and mass spectrometry-based proteomics, to dissect histone post-translational modifications (modificome) and chromatin-binding proteins (interactome) associated with a specific chromatin region. We used H3K4me1 and Pu.1 antibodies to specifically enrich enhancers from macrophage-derived RAW264.7 cells. Native chromatin and formaldehyde-fixed chromatin from SILAC-labeled cells were used for the hPTMs profiling and the identification of chromatin binding proteins, respectively. Furthermore, a triple-SILAC setup was used in time-course experiments to profile the gene transcriptional activation triggered by lipopolysaccharide. Our findings suggest that enhancers have in basal condition an overall higher-ordered structure that is maintained during the inflammation; while a subset of proteins displays a dynamic behavior, i.e. the PBAF complex and Dnmt1, that seem to synergize with specific hPTMs to set an environment permissive to transcription. Interestingly, a number of factors are newly recruited at enhancers, suggesting a role in fine-tuning the appropriate gene expression: among them, Junb and Stat1 are well characterized to be involved in inflammatory response, while others (i.e. DDIT3 and Ifi204) are novel, very promising and under further investigation.

CHROP APPROACH DISSECTS THE DYNAMIC PROFILING OF CHROMATOME AT ENHANCERS OF INFLAMMATORY GENES / G. Sigismondo ; internal advisor: D.Pasini ; external advisor: M. Selbach ; supervisor: T. Bonaldi. - : . UNIVERSITA' DEGLI STUDI DI MILANO, 2015 Mar 18. ((26. ciclo, Anno Accademico 2014. [10.13130/sigismondo-gianluca_phd2015-03-18].

CHROP APPROACH DISSECTS THE DYNAMIC PROFILING OF CHROMATOME AT ENHANCERS OF INFLAMMATORY GENES

G. Sigismondo
2015

Abstract

Inflammatory stimuli drive a fine rearrangement of cell-specific chromatin determinants at cis-regulatory regions of inflammatory genes. Although a few determinants are known (i.e. H3K4me1 and Pu.1), a global picture of the enhancers’ molecular signature and how specific factors dynamically synergize during the inflammatory response remain incomplete. The aim of my thesis is the global characterization of the enhancers’ determinants and their dynamic profiling during inflammatory response. I addressed this issue by employing the chromatin proteomics approach (ChroP), which combines chromatin immunoprecipitation and mass spectrometry-based proteomics, to dissect histone post-translational modifications (modificome) and chromatin-binding proteins (interactome) associated with a specific chromatin region. We used H3K4me1 and Pu.1 antibodies to specifically enrich enhancers from macrophage-derived RAW264.7 cells. Native chromatin and formaldehyde-fixed chromatin from SILAC-labeled cells were used for the hPTMs profiling and the identification of chromatin binding proteins, respectively. Furthermore, a triple-SILAC setup was used in time-course experiments to profile the gene transcriptional activation triggered by lipopolysaccharide. Our findings suggest that enhancers have in basal condition an overall higher-ordered structure that is maintained during the inflammation; while a subset of proteins displays a dynamic behavior, i.e. the PBAF complex and Dnmt1, that seem to synergize with specific hPTMs to set an environment permissive to transcription. Interestingly, a number of factors are newly recruited at enhancers, suggesting a role in fine-tuning the appropriate gene expression: among them, Junb and Stat1 are well characterized to be involved in inflammatory response, while others (i.e. DDIT3 and Ifi204) are novel, very promising and under further investigation.
BONALDI, TIZIANA
Epigenetics; Functional proteomics; LC-MS/MS; Inflammation, Chromatin; Chromatin interactors; Enhancers; Gene transcription regulation; histone Post Translational Modifications
Settore BIO/10 - Biochimica
CHROP APPROACH DISSECTS THE DYNAMIC PROFILING OF CHROMATOME AT ENHANCERS OF INFLAMMATORY GENES / G. Sigismondo ; internal advisor: D.Pasini ; external advisor: M. Selbach ; supervisor: T. Bonaldi. - : . UNIVERSITA' DEGLI STUDI DI MILANO, 2015 Mar 18. ((26. ciclo, Anno Accademico 2014. [10.13130/sigismondo-gianluca_phd2015-03-18].
Doctoral Thesis
File in questo prodotto:
File Dimensione Formato  
phd_unimi_R09407.pdf

accesso aperto

Descrizione: Tesi Dottorato
Tipologia: Tesi di dottorato completa
Dimensione 6.06 MB
Formato Adobe PDF
6.06 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/264906
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact