Cannabis use is frequent among adolescents. Its main component, delta-9-tetrahydrocannabinol (THC), affects the immune system. We recently demonstrated that chronic exposure of adolescent mice to THC suppressed immunity immediately after treatment but that after a washout period THC induced a long-lasting opposite modulation towards a proinflammatory and T-helper-1 phenotype in adulthood. The main objective of this study was to investigate whether the same effect was also present in brain regions such as the hypothalamus and hippocampus. Thirty-three-day-old adolescent and 80-day-old adult male mice were used. Acute THC administration induced a similar reduction of macrophage proinflammatory cytokines and an IL-10 increase in adult and adolescent mice. THC did not affect brain cytokines in adult mice, but a proinflammatory cytokine decrease was evident in the adolescent brain. A similar effect was present in the hypothalamus and hippocampus after 10 days’ THC administration. In contrast, when brain cytokines were measured 47 days after the final THC administration, we observed an inverted effect in adult mice treated as adolescents, i.e., IL-1β and TNF-α increased and IL-10 decreased, indicating a shift toward neuroinflammation. These data suggest that THC exposure in adolescence has long-lasting effects on brain cytokines that parallel those present in the periphery. This modulation may affect vulnerability to immune and behavioural diseases in adulthood.

Exposure of adolescent mice to delta-9-tetrahydrocannabinol induces long-lasting modulation of pro- and anti-inflammatory cytokines in hypothalamus and hippocampus similar to that observed for peripheral macrophages / S. Moretti, S. Franchi, M. Castelli, G. Amodeo, L. Somaini, A. Panerai, P. Sacerdote. - In: JOURNAL OF NEUROIMMUNE PHARMACOLOGY. - ISSN 1557-1890. - 10:2(2015), pp. 371-379.

Exposure of adolescent mice to delta-9-tetrahydrocannabinol induces long-lasting modulation of pro- and anti-inflammatory cytokines in hypothalamus and hippocampus similar to that observed for peripheral macrophages

S. Moretti;S. Franchi;M. Castelli;G. Amodeo;A. Panerai;P. Sacerdote
2015

Abstract

Cannabis use is frequent among adolescents. Its main component, delta-9-tetrahydrocannabinol (THC), affects the immune system. We recently demonstrated that chronic exposure of adolescent mice to THC suppressed immunity immediately after treatment but that after a washout period THC induced a long-lasting opposite modulation towards a proinflammatory and T-helper-1 phenotype in adulthood. The main objective of this study was to investigate whether the same effect was also present in brain regions such as the hypothalamus and hippocampus. Thirty-three-day-old adolescent and 80-day-old adult male mice were used. Acute THC administration induced a similar reduction of macrophage proinflammatory cytokines and an IL-10 increase in adult and adolescent mice. THC did not affect brain cytokines in adult mice, but a proinflammatory cytokine decrease was evident in the adolescent brain. A similar effect was present in the hypothalamus and hippocampus after 10 days’ THC administration. In contrast, when brain cytokines were measured 47 days after the final THC administration, we observed an inverted effect in adult mice treated as adolescents, i.e., IL-1β and TNF-α increased and IL-10 decreased, indicating a shift toward neuroinflammation. These data suggest that THC exposure in adolescence has long-lasting effects on brain cytokines that parallel those present in the periphery. This modulation may affect vulnerability to immune and behavioural diseases in adulthood.
Delta-9-tetrahydrocannabinol; Adolescence; Cytokines; Neuroinflammation
Settore BIO/14 - Farmacologia
JOURNAL OF NEUROIMMUNE PHARMACOLOGY
Article (author)
File in questo prodotto:
File Dimensione Formato  
art%3A10.1007%2Fs11481-015-9592-2.pdf

non disponibili

589.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/264739
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 13
social impact