In functional linear regression, the parameters estimation involves solving a non necessarily well-posed problem and it has points of contact with a range of methodologies, including statistical smoothing, deconvolution and projection on finite-dimensional subspaces. We discuss the standard approach based explicitly on functional principal components analysis, nevertheless the choice of the number of basis components remains something subjective and not always properly discussed and justified. In this work we discuss inferential properties of least square estimation in this context with different choices of projection subspaces, as well as we study asymptotic behaviour increasing the dimension of subspaces.

On linear regression models in infinite dimensional spaces with scalar response / A. Ghiglietti, F. Ieva, A.M. Paganoni, G. Aletti. - In: STATISTICAL PAPERS. - ISSN 0932-5026. - 58:2(2017), pp. 527-548. [10.1007/s00362-015-0710-2]

On linear regression models in infinite dimensional spaces with scalar response

A. Ghiglietti
Primo
;
G. Aletti
Ultimo
2017

Abstract

In functional linear regression, the parameters estimation involves solving a non necessarily well-posed problem and it has points of contact with a range of methodologies, including statistical smoothing, deconvolution and projection on finite-dimensional subspaces. We discuss the standard approach based explicitly on functional principal components analysis, nevertheless the choice of the number of basis components remains something subjective and not always properly discussed and justified. In this work we discuss inferential properties of least square estimation in this context with different choices of projection subspaces, as well as we study asymptotic behaviour increasing the dimension of subspaces.
Asymptotic properties of statistical inference; Functional principal component analysis; Functional regression
Settore MAT/06 - Probabilita' e Statistica Matematica
Settore SECS-S/01 - Statistica
2017
28-ago-2015
http://link.springer.com/article/10.1007/s00362-015-0710-2
Centro di Ricerca Interdisciplinare su Modellistica Matematica, Analisi Statistica e Simulazione Computazionale per la Innovazione Scientifica e Tecnologica ADAMSS
hdl:2434/263752
Article (author)
File in questo prodotto:
File Dimensione Formato  
art%3A10.1007%2Fs00362-015-0710-2.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 8.56 MB
Formato Adobe PDF
8.56 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/263752
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact