Introduction: Biglycan is an important proteoglycan of the extracellular matrix of intervertebral disc (IVD), and its decrease with aging has been correlated with IVD degeneration. Biglycan deficient (Bgn(-/0)) mice lack this protein and undergo spontaneous IVD degeneration with aging, thus representing a valuable in vivo model for preliminary studies on therapies for human progressive IVD degeneration. The purpose of the present study was to assess the possible beneficial effects of adipose-derived stromal cells (ADSCs) implants in the Bgn(-/0) mouse model. Methods: To evaluate ADSC implant efficacy, Bgn(-/0) mice were intradiscally (L1-L2) injected with 8x10(4) ADSCs at 16 months old, when mice exhibit severe and complete IVD degeneration, evident on both 7Tesla Magnetic Resonance Imaging (7TMRI) and histology. Placebo and ADSCs treated Bgn(-/0) mice were assessed by 7TMRI analysis up to 12 weeks post-transplantation. Mice were then sacrificed and implanted discs were analyzed by histology and immunohistochemistry for the presence of human cells and for the expression of biglycan and aggrecan in the IVD area. Results: After in vivo treatment, 7TMRI revealed evident increase in signal intensity within the discs of mice that received ADSCs, while placebo treatment did not show any variation. Ultrastructural analyses demonstrated that human ADSC survival occurred in the injected discs up to 12 weeks after implant. These cells acquired a positive expression for biglycan, and this proteoglycan was specifically localized in human cells. Moreover, ADSC treatment resulted in a significant increase of aggrecan tissue levels. Conclusion: Overall, this work demonstrates that ADSC implant into degenerated disc of Bgn(-/0) mice ameliorates disc damage, promotes new expression of biglycan and increased levels of aggrecan. This suggests a potential benefit of ADSC implant in the treatment of chronic degenerative disc disease and prompts further studies in this field.

Potential use of human adipose mesenchymal stromal cells for intervertebral disc regeneration : a preliminary study on biglycan-deficient murine model of chronic disc degeneration / G. Marfia, R. Campanella, S.E. Navone, I. Zucca, A. Scotti, M. Figini, C. Di Vito, G. Alessandri, L. Riboni, E. Parati. - In: ARTHRITIS RESEARCH & THERAPY. - ISSN 1478-6354. - 16:5(2014 Oct 08), pp. 457.1-457.13. [10.1186/s13075-014-0457-5]

Potential use of human adipose mesenchymal stromal cells for intervertebral disc regeneration : a preliminary study on biglycan-deficient murine model of chronic disc degeneration

G. Marfia
Primo
;
I. Zucca;C. Di Vito;L. Riboni
Penultimo
;
2014

Abstract

Introduction: Biglycan is an important proteoglycan of the extracellular matrix of intervertebral disc (IVD), and its decrease with aging has been correlated with IVD degeneration. Biglycan deficient (Bgn(-/0)) mice lack this protein and undergo spontaneous IVD degeneration with aging, thus representing a valuable in vivo model for preliminary studies on therapies for human progressive IVD degeneration. The purpose of the present study was to assess the possible beneficial effects of adipose-derived stromal cells (ADSCs) implants in the Bgn(-/0) mouse model. Methods: To evaluate ADSC implant efficacy, Bgn(-/0) mice were intradiscally (L1-L2) injected with 8x10(4) ADSCs at 16 months old, when mice exhibit severe and complete IVD degeneration, evident on both 7Tesla Magnetic Resonance Imaging (7TMRI) and histology. Placebo and ADSCs treated Bgn(-/0) mice were assessed by 7TMRI analysis up to 12 weeks post-transplantation. Mice were then sacrificed and implanted discs were analyzed by histology and immunohistochemistry for the presence of human cells and for the expression of biglycan and aggrecan in the IVD area. Results: After in vivo treatment, 7TMRI revealed evident increase in signal intensity within the discs of mice that received ADSCs, while placebo treatment did not show any variation. Ultrastructural analyses demonstrated that human ADSC survival occurred in the injected discs up to 12 weeks after implant. These cells acquired a positive expression for biglycan, and this proteoglycan was specifically localized in human cells. Moreover, ADSC treatment resulted in a significant increase of aggrecan tissue levels. Conclusion: Overall, this work demonstrates that ADSC implant into degenerated disc of Bgn(-/0) mice ameliorates disc damage, promotes new expression of biglycan and increased levels of aggrecan. This suggests a potential benefit of ADSC implant in the treatment of chronic degenerative disc disease and prompts further studies in this field.
low-back-pain; stem-cells; nucleus pulposus; articular-catilage; rabbit model; transplantation; therapy; tissue; mice; matrix
Settore BIO/10 - Biochimica
8-ott-2014
Article (author)
File in questo prodotto:
File Dimensione Formato  
s13075-014-0457-5.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 3.38 MB
Formato Adobe PDF
3.38 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/260559
Citazioni
  • ???jsp.display-item.citation.pmc??? 22
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 47
social impact