We compare the performance of three different stochastic optimization methods on two analytic objective functions varying the number of parameters, and on a 1D elastic full waveform inversion (FWI) problem. The three methods that we consider are the Adaptive Simulated Annealing (ASA), the Genetic Algorithm (GA), and the Neighbourhood Algorithm (NA) which are frequently used in seismic inversion. The application of these algorithms on the two analytic functions is aimed at evaluating the rate of convergence for different model space dimensions. The first function consists in a convex surface, and the second one is a multi-minima objective function which also permits to verify the ability of each method to escape from entrapment in local minima. Our study shows that among the three optimization methods GA displays the better scaling with the number of parameters. The ASA method is often the most efficient in case of low dimensional model spaces, whereas NA seems to perform less efficiently than the other two and to be more prone to get trapped in local minima. Tests of 1D elastic FWI on synthetic data, inverting for density, P and S-wave velocity for a total of 21 unknowns confirm the conclusions drawn from the previous examples.

Comparison of stochastic optimization methods on two analytic objective functions and on a 1D elastic FWI / A. Sajeva, M. Aleardi, A. Mazzotti, E. Stucchi, B. Galuzzi - In: EAGE Expanded : abstractsHouten : EAGE, 2014. - ISBN 9789073834897. - pp. 2849-2853 (( Intervento presentato al 76. convegno European Association of Geoscientists and Engineers (EAGE) Conference and Exhibition tenutosi a Amsterdam nel 2014 [10.3997/2214-4609.20140857].

Comparison of stochastic optimization methods on two analytic objective functions and on a 1D elastic FWI

E. Stucchi
Penultimo
;
B. Galuzzi
Ultimo
2014

Abstract

We compare the performance of three different stochastic optimization methods on two analytic objective functions varying the number of parameters, and on a 1D elastic full waveform inversion (FWI) problem. The three methods that we consider are the Adaptive Simulated Annealing (ASA), the Genetic Algorithm (GA), and the Neighbourhood Algorithm (NA) which are frequently used in seismic inversion. The application of these algorithms on the two analytic functions is aimed at evaluating the rate of convergence for different model space dimensions. The first function consists in a convex surface, and the second one is a multi-minima objective function which also permits to verify the ability of each method to escape from entrapment in local minima. Our study shows that among the three optimization methods GA displays the better scaling with the number of parameters. The ASA method is often the most efficient in case of low dimensional model spaces, whereas NA seems to perform less efficiently than the other two and to be more prone to get trapped in local minima. Tests of 1D elastic FWI on synthetic data, inverting for density, P and S-wave velocity for a total of 21 unknowns confirm the conclusions drawn from the previous examples.
Settore GEO/11 - Geofisica Applicata
European Association of Geoscientists and Engineers (EAGE)
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
Tu_P01_15.pdf

accesso riservato

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/259947
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
social impact