We present a stochastic full-waveform inversion that makes use of a genetic algorithm to estimate acoustic 2D macro-models of the subsurface. We test this method on the Marmousi model. The proposed method is computationally expensive but yields a final (long wavelength) model that is well-suited to play the role of the starting model for a local full-waveform inversion.

Estimation of velocity macro-models using stochastic full-waveform inversion / A. Sajeva, M. Aleardi, A. Mazzotti, N. Bienati, E. Stucchi (EXPANDED ABSTRACTS WITH BIOGRAPHIES). - In: SEG Expanded Abstracts[s.l] : Society of Exploration Geophysicists, 2014. - pp. 1227-1231 [10.1190/segam2014-1088.1]

Estimation of velocity macro-models using stochastic full-waveform inversion

E. Stucchi
Ultimo
2014

Abstract

We present a stochastic full-waveform inversion that makes use of a genetic algorithm to estimate acoustic 2D macro-models of the subsurface. We test this method on the Marmousi model. The proposed method is computationally expensive but yields a final (long wavelength) model that is well-suited to play the role of the starting model for a local full-waveform inversion.
2D; acoustic; finite difference; imaging; full-waveform inversion
Settore GEO/11 - Geofisica Applicata
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
segam2014-1088%2E1.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.18 MB
Formato Adobe PDF
2.18 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/259945
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact