Source to receiver distances used in seismic data acquisition have been steadily increasing and it is now common to work with data acquired with more than 10 km of offset. Subbasalt exploration and seismic undershooting are just two applications in which long-offset reflections are sought. However, such reflections are often subjected to muting to suppress normal moveout (NMO) stretch artifacts, thus causing a loss of valuable information. To retrieve these portions of the recorded wavefield, we developed a nonstretch NMO correction based on wavelet estimation and on an iterative procedure of partial NMO correction and deconvolution. We evaluated this methodology using fourth-order traveltime curve approximations to increase the offset of usable reflections, but it can be adapted to traveltime curves of any order. Time- and space-variant wavelets, estimated by means of singular value decomposition along the sought traveltimes, were used to build the desired output for the deconvolution that aims at retrieving the original shape of the partially stretched wavelets. We tested our method on a synthetic gather presenting time and offset varying wavelets, on a real-marine line simulating an undershooting pattern and on true undershooting land-marine data. These examples demonstrated that our new algorithm effectively limits the stretching associated with the NMO correction and enables the recovery of those portions of the stacked sections that are typically lost from muting in the standard NMO correction.

Nonstretch normal moveout through iterative partial correction and deconvolution / E. Biondi, E. Stucchi, A. Mazzotti. - In: GEOPHYSICS. - ISSN 0016-8033. - 79:4(2014), pp. V131-V141. [10.1190/geo2013-0392.1]

Nonstretch normal moveout through iterative partial correction and deconvolution

E. Stucchi
Primo
;
2014

Abstract

Source to receiver distances used in seismic data acquisition have been steadily increasing and it is now common to work with data acquired with more than 10 km of offset. Subbasalt exploration and seismic undershooting are just two applications in which long-offset reflections are sought. However, such reflections are often subjected to muting to suppress normal moveout (NMO) stretch artifacts, thus causing a loss of valuable information. To retrieve these portions of the recorded wavefield, we developed a nonstretch NMO correction based on wavelet estimation and on an iterative procedure of partial NMO correction and deconvolution. We evaluated this methodology using fourth-order traveltime curve approximations to increase the offset of usable reflections, but it can be adapted to traveltime curves of any order. Time- and space-variant wavelets, estimated by means of singular value decomposition along the sought traveltimes, were used to build the desired output for the deconvolution that aims at retrieving the original shape of the partially stretched wavelets. We tested our method on a synthetic gather presenting time and offset varying wavelets, on a real-marine line simulating an undershooting pattern and on true undershooting land-marine data. These examples demonstrated that our new algorithm effectively limits the stretching associated with the NMO correction and enables the recovery of those portions of the stacked sections that are typically lost from muting in the standard NMO correction.
seismic data; NMO correction; AVO inversion; migration; stretch; pulse
Settore GEO/11 - Geofisica Applicata
2014
Article (author)
File in questo prodotto:
File Dimensione Formato  
V131.full.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 3.7 MB
Formato Adobe PDF
3.7 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/259909
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 13
social impact