We show that the conformally invariant fractional powers of the sub-Laplacian on the Heisenberg group are given in terms of the scattering operator for an extension problem to the Siegel upper halfspace. Remarkably, this extension problem is different from the one studied, among others, by Caffarelli and Silvestre. We also prove an energy identity that yields a sharp trace Sobolev embedding.

An extension problem for the CR fractional Laplacian / R.L. Frank, M.D.M. González, D.D. Monticelli, J. Tan. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - 270(2015 Jan 22), pp. 97-137. [10.1016/j.aim.2014.09.026]

An extension problem for the CR fractional Laplacian

D.D. Monticelli
Penultimo
;
2015-01-22

Abstract

We show that the conformally invariant fractional powers of the sub-Laplacian on the Heisenberg group are given in terms of the scattering operator for an extension problem to the Siegel upper halfspace. Remarkably, this extension problem is different from the one studied, among others, by Caffarelli and Silvestre. We also prove an energy identity that yields a sharp trace Sobolev embedding.
CR manifolds; Fractional order operators; Fractional order weighted Sobolev spaces; Heisenberg group; Sublaplacian
Settore MAT/05 - Analisi Matematica
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0001870814003818-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 638.25 kB
Formato Adobe PDF
638.25 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/259618
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 33
social impact