We study a resonant Bose-Fermi mixture at zero temperature in three dimensions by using the fixed-node diffusion Monte Carlo method. We explore the system from weak to strong boson-fermion interaction, for different concentrations of the bosons relative to the fermion component. We focus on the case where the boson density $n_B$ is smaller than the fermion density $n_F$, for which a first-order quantum phase transition is found from a state with condensed bosons immersed in a Fermi sea, to a Fermi-Fermi mixture of composite fermions and unpaired fermions. We obtain the equation of state and the phase diagram, and we find that the region of phase separation shrinks to zero for vanishing $n_B$.
Quantum Monte Carlo study of a resonant dilute Bose-Fermi mixture / G. Bertaina, E. Fratini, P. Pieri, S. Giorgini. ((Intervento presentato al convegno Bose-Einstein Condensation - Frontiers in Quantum Gases tenutosi a Sant Feliu de Guixols nel 2013.
Quantum Monte Carlo study of a resonant dilute Bose-Fermi mixture
G. BertainaPrimo
;
2013
Abstract
We study a resonant Bose-Fermi mixture at zero temperature in three dimensions by using the fixed-node diffusion Monte Carlo method. We explore the system from weak to strong boson-fermion interaction, for different concentrations of the bosons relative to the fermion component. We focus on the case where the boson density $n_B$ is smaller than the fermion density $n_F$, for which a first-order quantum phase transition is found from a state with condensed bosons immersed in a Fermi sea, to a Fermi-Fermi mixture of composite fermions and unpaired fermions. We obtain the equation of state and the phase diagram, and we find that the region of phase separation shrinks to zero for vanishing $n_B$.File | Dimensione | Formato | |
---|---|---|---|
posterslides.pdf
accesso aperto
Descrizione: Slides componenti il poster
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
704.75 kB
Formato
Adobe PDF
|
704.75 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.