In this paper, we prove a lower bound on the number of rounds required by a deterministic distributed protocol for broadcasting a message in radio networks whose processors do not know the identities of their neighbors. Such an assumption captures the main characteristic of mobile and wireless environments [3], i.e., the instability of the network topology. For any distributed broadcast protocol Π, for any n and for any D n/2, we exhibit a network G with n nodes and diameter D such that the number of rounds needed by Π for broadcasting a message in G is Ω(D log n). The result still holds even if the processors in the network use a different program and know n and D. We also consider the version of the broadcast problem in which an arbitrary number of processors issue at the same time an identical message that has to be delivered to the other processors. In such a case we prove that, even assuming that the processors know the network topology, Ω(n) rounds are required for solving the problem on a complete network (D = 1) with n processors.

Lower bounds for the broadcast problem in mobile radio networks / D. Bruschi, M. Del Pinto. - In: DISTRIBUTED COMPUTING. - ISSN 0178-2770. - 10:3(1997 Mar), pp. 129-135.

Lower bounds for the broadcast problem in mobile radio networks

D. Bruschi
;
1997

Abstract

In this paper, we prove a lower bound on the number of rounds required by a deterministic distributed protocol for broadcasting a message in radio networks whose processors do not know the identities of their neighbors. Such an assumption captures the main characteristic of mobile and wireless environments [3], i.e., the instability of the network topology. For any distributed broadcast protocol Π, for any n and for any D n/2, we exhibit a network G with n nodes and diameter D such that the number of rounds needed by Π for broadcasting a message in G is Ω(D log n). The result still holds even if the processors in the network use a different program and know n and D. We also consider the version of the broadcast problem in which an arbitrary number of processors issue at the same time an identical message that has to be delivered to the other processors. In such a case we prove that, even assuming that the processors know the network topology, Ω(n) rounds are required for solving the problem on a complete network (D = 1) with n processors.
Broadcast; Distributed algorithms; Mobile computing
Settore INF/01 - Informatica
mar-1997
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/258657
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 115
  • ???jsp.display-item.citation.isi??? 94
social impact