INTRODUCTION β-Thalassemias are one of the most frequent genetic disorders worldwide with 270 million of carriers and 350.000 affected new-borns per year. This disease is genetically characterized by the loss of production of the β globin chain of the adult haemoglobin, due to several mutation within the beta globin gene. Since the beta gene is expressed on both the chromosomes 11, we can have two different type (and severity) of beta thalassemia depending on the absence of both or just one beta gene: in the first case we have the β thalassemia MAJOR transfusion dependent, in the second case we have the β thalassemia MINOR or INTERMEDIA, transfusion independent. Our studies are focused on the last one. The absence of the β globin chain implies different consequences for the organism like as: - Ineffective erythropoiesis - Iron overload - Oxidative damage Many studies have been conducted so far in different fields (genomic, protein expression and regulation, iron metabolism) in order to guarantee a major comprehension of this disease. Recently a new protein came out as a possible regulator/responsible for the iron overload in β thalassemia; this molecule is the FERROPORTIN. Ferroportin (FPN) is the only know iron exporter protein. It is expressed in different cell types including duodenal enterocytes, hepatocytes, macrophages and erythroblast cells. Few years ago it has been reported the existence of two alternative transcripts of FPN with or without an iron – responsive element (IRE) on their promoter (FPN1A and FPN1B respectively). The expression of the different ferroportin isoforms as well as the mechanisms regulating their expression in erythroid cells in non-transfusion dependent β thalassemia syndromes (NTDT) are not known yet. AIM To investigate the expression profile of ferroportin isoforms during erythroid differentiation in control and NTDT cell cultures and to elucidate the mechanisms regulating their expression. MATERIALS AND METHODS An in vitro model of erythropoiesis derived from human peripheral CD34+ cells from healthy volunteers (control) and NTDT patients was used. The expression profiling of FPN isoforms (FPN1A and FPN1B) was evaluated at baseline (day 0) and at day 7 and 14 of culture (pro erythroblasts and orthochromatic erythroblasts stage respectively) by real−time PCR (2−dCt). The relative percentage of each isoform was calculated based on total ferroportin expression (FPN1A+FPN1B). The intracellular iron concentration was analyzed by using an Iron Assay Kit (Biovision). In independent experiments, control and NTDT cultures were treated with iron (Ferric Ammonium Citrate [FAC] 100µM), Desferal (DFO, 4µM), protoporfirin (SnPP IX 50-20µM), heme (Hemin 20-10µM) or hydrogen peroxide (H2O2 0.1mM) to investigate a possible role of these compounds in ferroportin regulation; FPN expression was evaluated at day 14 in standard and treated conditions by real−time PCR (2−ddCt; untreated cells used as calibrator). RESULTS The ferroportin expression increased during erythroid differentiation; with the highest level at the end of erythroblasts stage (day 14 of cultures) both in control and NTDT cultures. The FPN1A was the more expressed isoform in both conditions. Its expression was higher at the initial and final steps of erythropoiesis (day 0 and 14), while FPN1B expression was higher at the intermediate erythroblast stages (day 7). Noteworthy, the FPN1B expression, although lower compared to FPN1A, was significantly higher in NTDT cultures than in control ones, particularly at day 14. The intracellular iron concentration decreased significantly during erythroid differentiation (from day 7 to day 14) both in control and NTDT cultures, however, at day 7 (early erythroblasts stage) the iron levels in NTDT cultures were notably lower than in controls. The addition of FAC, DFO, SnPP IX and Hemin in control and NTDT cultures did not modify the ferroportin expression compared to untreated. H2O2 added to control cells increased the expression of both ferroportin isoforms (FPN1A: untreated cells: 1; H2O2: 1.33. FPN1B: untreated cells: 1; H2O2: 2.04). The intra and extracellular iron levels reflected the genetic results: there was an increase of extracellular iron due to an increase of FPN expression. CONCLUSIONS The ferroportin expression increases during erythroid differentiation either in control than in NTDT cultures, suggesting its role in exporting the excess intracellular iron. In both conditions, the FPN1A is the more expressed isoform. However, the expression of the non−iron responsive FPN1B isoform, although lower compared to FPN1A, is significantly higher in NTDT than in control conditions. In control cultures, FPN expression, and particularly the FPN1B isoform, seems to be up regulated by H2O2 addition. These data suggest that the oxidative stress, notably higher in NTDT conditions, could be one of the major regulator of FPN1B expression, with a major iron export from NTDT erythroblast cells.
INTRODUZIONE Le β-talassemie sono una delle malattie genetiche più frequenti in tutto il mondo con 270 milioni di portatori e 350.000 nuovi nati affetti all’anno. Questa malattia è geneticamente caratterizzata dalla perdita di produzione della catena β globinica dell'emoglobina adulta, dovuta a diverse mutazioni nel gene della β-globina. Poiché il gene beta è espresso su entrambi i cromosomi 11, possiamo avere due differenti tipi (e con differente gravità) di beta talassemia a seconda dell’assenza di entrambi o di un solo gene della beta globina: nel primo caso si ha la β talassemia MAJOR o trasfusione dipendente, nel secondo caso si ha la β talassemia MINOR o INTERMEDIA trasfusione indipendente. I nostri studi si concentrano su quest’ultima. L'assenza della catena β globina comporta diverse conseguenze per l'organismo come: - Eritropoiesi inefficace - Il sovraccarico di ferro - Il danno ossidativo Finora sono stati condotti molti studi in diversi campi (genomico, proteomico e nel metabolismo ferro) per garantire una maggiore comprensione di questa malattia. Recentemente si è scoperta una nuova proteina che potrebbe essere un eventuale regolatore o responsabile del sovraccarico di ferro nella β - talassemia; questa molecola è la ferroportina. La Ferroportina (FPN) è l'unico esportatore di ferro finora conosciuto. Essa è espressa in diversi tipi di cellule, tra cui gli enterociti duodenali, gli epatociti, i macrofagi e gli eritroblasti. Pochi anni fa, è stata segnalata l'esistenza di due trascritti alternativi della FPN con o senza le Iron Responsive Elements (IRE) sul loro promotore (FPN1A e FPN1B rispettivamente). L'espressione delle diverse isoforme della ferroportina nonché i meccanismi che la regolano nelle cellule eritroidi della β talassemia non-trasfusione dipendente (NTDT) non sono ancora noti. SCOPO Studiare il profilo di espressione delle due isoforme della ferroportina durante il differenziamento eritroide in colture controllo e di NTDT e chiarire i meccanismi che regolano la loro espressione. MATERIALI E METODI Per questi studi è stato usato un modello di eritropoiesi in vitro derivato da cellule CD34+ provenienti da sangue periferico di volontari sani (controllo) e pazienti NTDT. Il profilo dell'espressione genica delle due isoforme (FPN1A e FPN1B) è stato valutato allo stadio basale (giorno 0) e al giorno 7 e 14 della cultura (stadio di pro eritroblasti e di eritrociti ortocromatici rispettivamente) mediante la tecnica di real-time PCR (2-dCt). La percentuale relativa di ogni isoforma è stata calcolata sulla base dell’espressione della ferroportina totale (FPN1A + FPN1B). La concentrazione di ferro intra and extracellulare è stata analizzata utilizzando un kit di Ferro Assay (Biovision). In esperimenti indipendenti, colture di controllo e NTDT sono state trattate con: ferro (Ferro Ammonio Citrato [FAC] 100μM), Desferal (DFO, 4μM), protoporfirina (SNPP IX 50-20μM), eme (Emina 20-10μM) o perossido di idrogeno (H2O2 0,1mM) per indagare su un possibile ruolo di questi composti nella regolazione della ferroportina. L’espressione della FPN è stata valutata al 14esimo giorno in condizioni standard e nei trattati mediante la tecnica di real-time PCR (2-ddCt; cellule non trattate utilizzate come calibratore). RISULTATI L'espressione ferroportina aumenta durante il differenziamento eritroide, raggiungendo il livello massimo di espressione allo stadio di eritroblasti (giorno 14 di coltura) sia nel controllo sia negli NTDT. La FPN1A è l'isoforma più espressa in entrambe le condizioni. La sua espressione è più elevata negli stadi iniziali e finali dell’eritropoiesi (giorno 0 e 14), mentre l'espressione della FPN1B è maggiore nella fase intermedia di differenziamento eritroide (giorno 7). Degno di nota, l'espressione della FPN1B, anche se inferiore rispetto alla 1A, è significativamente maggiore nelle culture NTDT rispetto ai controlli, in particolare al giorno 14. La concentrazione di ferro intracellulare è diminuita in modo significativo durante il differenziamento eritroide (dal giorno 7 al giorno 14), sia nei controlli sia negli NTDT, tuttavia, al giorno 7 (stadio di eritroblasti) i livelli di ferro nelle culture NTDT sono notevolmente inferiori rispetto ai controlli. L'aggiunta di FAC, DFO, SnPP IX ed Emina nei controlli e nelle colture di NTDT non ha modificato l'espressione della ferroportina rispetto ai non trattati. L’H2O2 aggiunto ai controlli aumenta l'espressione di entrambe le isoforme della ferroportina (FPN1A: cellule non trattate: 1; H2O2: 1.33 FPN1B: cellule non trattate: 1; H2O2: 2.04). I livelli di ferro intra ed extracellulari riflettono i risultati genetici: c'è stato un aumento di ferro extracellulare causa di un aumento di espressione FPN. CONCLUSIONI L'espressione della ferroportina aumenta durante il differenziamento eritroide sia nei controlli sia nelle culture NTDT, suggerendo il suo ruolo nell’esportare il ferro intracellulare in eccesso. In entrambe le condizioni, la FPN1A è l'isoforma più espressa. Tuttavia, l'espressione dell’isoforma 1B non responsiva al ferro, anche se minore rispetto a FPN1A, è significativamente maggiore nei NTDT rispetto ai CTRL. In colture di controllo, l’espressione della FPN, ed in particolare dell’isoforma 1B, sembra essere regolata dall’aggiunta di H2O2. Questi dati suggeriscono che lo stress ossidativo, particolarmente elevato nelle NTDT, potrebbe essere uno dei principali regolatori dell’espressione dell’isoforma 1B, generando così un’importante esportazione di ferro dalle cellule NTDT.
IN VITRO FERROPORTIN EXPRESSION IN NON-TRANSFUSION DEPENDENT THALASSEMIA DURING ERYTHROID DIFFERENTIATION / L. Sonzogni ; tutor: MD. Cappellini ; coordinatore: M. Clerici. DIPARTIMENTO DI SCIENZE CLINICHE E DI COMUNITA', 2015 Jan 20. 27. ciclo, Anno Accademico 2014. [10.13130/sonzogni-laura_phd2015-01-20].
IN VITRO FERROPORTIN EXPRESSION IN NON-TRANSFUSION DEPENDENT THALASSEMIA DURING ERYTHROID DIFFERENTIATION
L. Sonzogni
2015
Abstract
INTRODUCTION β-Thalassemias are one of the most frequent genetic disorders worldwide with 270 million of carriers and 350.000 affected new-borns per year. This disease is genetically characterized by the loss of production of the β globin chain of the adult haemoglobin, due to several mutation within the beta globin gene. Since the beta gene is expressed on both the chromosomes 11, we can have two different type (and severity) of beta thalassemia depending on the absence of both or just one beta gene: in the first case we have the β thalassemia MAJOR transfusion dependent, in the second case we have the β thalassemia MINOR or INTERMEDIA, transfusion independent. Our studies are focused on the last one. The absence of the β globin chain implies different consequences for the organism like as: - Ineffective erythropoiesis - Iron overload - Oxidative damage Many studies have been conducted so far in different fields (genomic, protein expression and regulation, iron metabolism) in order to guarantee a major comprehension of this disease. Recently a new protein came out as a possible regulator/responsible for the iron overload in β thalassemia; this molecule is the FERROPORTIN. Ferroportin (FPN) is the only know iron exporter protein. It is expressed in different cell types including duodenal enterocytes, hepatocytes, macrophages and erythroblast cells. Few years ago it has been reported the existence of two alternative transcripts of FPN with or without an iron – responsive element (IRE) on their promoter (FPN1A and FPN1B respectively). The expression of the different ferroportin isoforms as well as the mechanisms regulating their expression in erythroid cells in non-transfusion dependent β thalassemia syndromes (NTDT) are not known yet. AIM To investigate the expression profile of ferroportin isoforms during erythroid differentiation in control and NTDT cell cultures and to elucidate the mechanisms regulating their expression. MATERIALS AND METHODS An in vitro model of erythropoiesis derived from human peripheral CD34+ cells from healthy volunteers (control) and NTDT patients was used. The expression profiling of FPN isoforms (FPN1A and FPN1B) was evaluated at baseline (day 0) and at day 7 and 14 of culture (pro erythroblasts and orthochromatic erythroblasts stage respectively) by real−time PCR (2−dCt). The relative percentage of each isoform was calculated based on total ferroportin expression (FPN1A+FPN1B). The intracellular iron concentration was analyzed by using an Iron Assay Kit (Biovision). In independent experiments, control and NTDT cultures were treated with iron (Ferric Ammonium Citrate [FAC] 100µM), Desferal (DFO, 4µM), protoporfirin (SnPP IX 50-20µM), heme (Hemin 20-10µM) or hydrogen peroxide (H2O2 0.1mM) to investigate a possible role of these compounds in ferroportin regulation; FPN expression was evaluated at day 14 in standard and treated conditions by real−time PCR (2−ddCt; untreated cells used as calibrator). RESULTS The ferroportin expression increased during erythroid differentiation; with the highest level at the end of erythroblasts stage (day 14 of cultures) both in control and NTDT cultures. The FPN1A was the more expressed isoform in both conditions. Its expression was higher at the initial and final steps of erythropoiesis (day 0 and 14), while FPN1B expression was higher at the intermediate erythroblast stages (day 7). Noteworthy, the FPN1B expression, although lower compared to FPN1A, was significantly higher in NTDT cultures than in control ones, particularly at day 14. The intracellular iron concentration decreased significantly during erythroid differentiation (from day 7 to day 14) both in control and NTDT cultures, however, at day 7 (early erythroblasts stage) the iron levels in NTDT cultures were notably lower than in controls. The addition of FAC, DFO, SnPP IX and Hemin in control and NTDT cultures did not modify the ferroportin expression compared to untreated. H2O2 added to control cells increased the expression of both ferroportin isoforms (FPN1A: untreated cells: 1; H2O2: 1.33. FPN1B: untreated cells: 1; H2O2: 2.04). The intra and extracellular iron levels reflected the genetic results: there was an increase of extracellular iron due to an increase of FPN expression. CONCLUSIONS The ferroportin expression increases during erythroid differentiation either in control than in NTDT cultures, suggesting its role in exporting the excess intracellular iron. In both conditions, the FPN1A is the more expressed isoform. However, the expression of the non−iron responsive FPN1B isoform, although lower compared to FPN1A, is significantly higher in NTDT than in control conditions. In control cultures, FPN expression, and particularly the FPN1B isoform, seems to be up regulated by H2O2 addition. These data suggest that the oxidative stress, notably higher in NTDT conditions, could be one of the major regulator of FPN1B expression, with a major iron export from NTDT erythroblast cells.File | Dimensione | Formato | |
---|---|---|---|
phd_unimi_R09544.pdf
accesso aperto
Descrizione: Doctoral Thesis
Tipologia:
Tesi di dottorato completa
Dimensione
4.31 MB
Formato
Adobe PDF
|
4.31 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.