This work is oriented to take advantage of graphene and nanotubes features in electrocatalysis. At present, a main challenge in this context deals with obtaining inexpensive, energetically efficient and durable catalysts for oxygen reduction in Polymer Electrolyte Membrane Fuel Cells (PEMFC). Platinum and Pt-alloys are currently the best cathode catalysts for this reaction. However, since the metal is scarce and expensive, there is a strong effort to find alternative catalysts. Nitrogen-doped carbon catalysts, also containing iron and cobalt centres, appear to be good and promising platinum alternatives1. For outstanding electronic, mechanical and structural properties graphene oxide and nanotubes could be extremely interesting substitutes either as a catalyst itself or as catalyst support. In this work, we will present some preliminary electrochemical results on Oxygen Reduction Reaction about a series of graphene oxide intercalated with polyethyleneimine of different molecular weight2 and doped with iron, and iron doped nitrogen modified nanotubes, prepared using different nitrogen insertion methods. Physico-chemical characterisation will be also presented. 1 F. Jaouen, V. Goellner, M. Lefevre, J. Herranz, E. Proietti, J.P. Dodelet, Electrochim. Acta 87 (2013) 619. 2 T. Tsoufis, F. Katsaros, Z. Sideratou, B.J. Kooi, M.A. Karakassides, A. Siozios, Chem. A Eur. J., In Press, DOI: 10.1002/chem.201304599.

Modified Carbon Nanostructures As Catalysts For Oxygen Reduction Reaction / M. Longhi, L. Formaro, R. Bresciani, S. Marzorati, T. Tsoufis, F. Katsaros, Z. Sideratou. ((Intervento presentato al 65. convegno Annual meeting of the International Society of Electrochemistry tenutosi a Lausanne nel 2014.

Modified Carbon Nanostructures As Catalysts For Oxygen Reduction Reaction

M. Longhi
Primo
;
L. Formaro
Secondo
;
S. Marzorati;
2014

Abstract

This work is oriented to take advantage of graphene and nanotubes features in electrocatalysis. At present, a main challenge in this context deals with obtaining inexpensive, energetically efficient and durable catalysts for oxygen reduction in Polymer Electrolyte Membrane Fuel Cells (PEMFC). Platinum and Pt-alloys are currently the best cathode catalysts for this reaction. However, since the metal is scarce and expensive, there is a strong effort to find alternative catalysts. Nitrogen-doped carbon catalysts, also containing iron and cobalt centres, appear to be good and promising platinum alternatives1. For outstanding electronic, mechanical and structural properties graphene oxide and nanotubes could be extremely interesting substitutes either as a catalyst itself or as catalyst support. In this work, we will present some preliminary electrochemical results on Oxygen Reduction Reaction about a series of graphene oxide intercalated with polyethyleneimine of different molecular weight2 and doped with iron, and iron doped nitrogen modified nanotubes, prepared using different nitrogen insertion methods. Physico-chemical characterisation will be also presented. 1 F. Jaouen, V. Goellner, M. Lefevre, J. Herranz, E. Proietti, J.P. Dodelet, Electrochim. Acta 87 (2013) 619. 2 T. Tsoufis, F. Katsaros, Z. Sideratou, B.J. Kooi, M.A. Karakassides, A. Siozios, Chem. A Eur. J., In Press, DOI: 10.1002/chem.201304599.
2014
Settore CHIM/02 - Chimica Fisica
Modified Carbon Nanostructures As Catalysts For Oxygen Reduction Reaction / M. Longhi, L. Formaro, R. Bresciani, S. Marzorati, T. Tsoufis, F. Katsaros, Z. Sideratou. ((Intervento presentato al 65. convegno Annual meeting of the International Society of Electrochemistry tenutosi a Lausanne nel 2014.
Conference Object
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/255545
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact