Non-covalent interactions (NCI) define the rules underlying crystallisation, self-assembly and drugreceptor docking processes. A novel NCI descriptor, based on the reduced electron density gradient (RDG), that enables easy visualisation of the zones of the electron density (ED) involved in either the supposedly attractive (dispersive, hydrogen bonding) or allegedly repulsive (steric) intermolecular interactions, was recently developed by Johnson et al. Here, it is applied for the first time to EDs derived from single-crystal X-ray diffraction data. A computer code handling both experimental and ab initio EDs in the RDG-NCI perspective was purposely written. Three cases spanning a wide range of NCI classes were analysed: 1) benzene, as the prototype of stacking and weak CH center dot center dot center dot pi interactions; 2) austdiol, a heavily functionalised fungal metabolite with a complex hydrogen-bonding network; 3) two polymorphs of the heteroatom-rich anti-ulcer drug famotidine, with van der Waals and hydrogen-bond contacts between N- and S-containing groups. Even when applied to experimental EDs, the RDG index is a valuable NCI descriptor that can highlight their different nature and strength and provide results of comparable quality to ab initio approaches. Combining the RDG-NCI study with Baders ED approach was a key step forward, as the RDG index can depict inherently delocalised interactions in terms of extended and flat RDG isosurfaces, in contrast to the bond path analysis, which is often bounded to a too localised and possibly discontinuous (yes/no) description. Conversely, the topological tool can provide quantitative insight into the simple, qualitative NCI picture offered by the RDG index. Hopefully, this study may pave the way to a deeper analysis of weak interactions in proteins using structural and ED information from experiment.

Revealing non-covalent interactions in molecular crystals through their experimental electron densities / G. Saleh, C. Gatti, L. Lo Presti, J. Contreras-García. - In: CHEMISTRY-A EUROPEAN JOURNAL. - ISSN 0947-6539. - 18:48(2012 Nov 26), pp. 15523-15536.

Revealing non-covalent interactions in molecular crystals through their experimental electron densities

G. Saleh
Primo
;
L. Lo Presti
Penultimo
;
2012

Abstract

Non-covalent interactions (NCI) define the rules underlying crystallisation, self-assembly and drugreceptor docking processes. A novel NCI descriptor, based on the reduced electron density gradient (RDG), that enables easy visualisation of the zones of the electron density (ED) involved in either the supposedly attractive (dispersive, hydrogen bonding) or allegedly repulsive (steric) intermolecular interactions, was recently developed by Johnson et al. Here, it is applied for the first time to EDs derived from single-crystal X-ray diffraction data. A computer code handling both experimental and ab initio EDs in the RDG-NCI perspective was purposely written. Three cases spanning a wide range of NCI classes were analysed: 1) benzene, as the prototype of stacking and weak CH center dot center dot center dot pi interactions; 2) austdiol, a heavily functionalised fungal metabolite with a complex hydrogen-bonding network; 3) two polymorphs of the heteroatom-rich anti-ulcer drug famotidine, with van der Waals and hydrogen-bond contacts between N- and S-containing groups. Even when applied to experimental EDs, the RDG index is a valuable NCI descriptor that can highlight their different nature and strength and provide results of comparable quality to ab initio approaches. Combining the RDG-NCI study with Baders ED approach was a key step forward, as the RDG index can depict inherently delocalised interactions in terms of extended and flat RDG isosurfaces, in contrast to the bond path analysis, which is often bounded to a too localised and possibly discontinuous (yes/no) description. Conversely, the topological tool can provide quantitative insight into the simple, qualitative NCI picture offered by the RDG index. Hopefully, this study may pave the way to a deeper analysis of weak interactions in proteins using structural and ED information from experiment.
noncovalent interactions; quantum chemistry; reduced density gradient; solid-state structures; X-ray diffraction
Settore CHIM/02 - Chimica Fisica
4-ott-2012
Article (author)
File in questo prodotto:
File Dimensione Formato  
NCI_CEJ_earlyView.pdf

accesso riservato

Descrizione: Articolo principale
Tipologia: Publisher's version/PDF
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/254992
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 129
  • ???jsp.display-item.citation.isi??? 130
social impact