We address local existence, blow-up and global existence of mild solutions to the semilinear heat equation on Riemannian manifolds with negative sectional curvature. We deal with a power nonlinearity multiplied by a time-dependent positive function h(t), and initial conditions u0∈Lp(M). We show that depending on the behavior at infinity of h, either every solution blows up in finite time, or a global solution exists, if the initial datum is small enough. In particular, for any power nonlinearity, if h≡1 we have global existence for small initial data, whereas if h(t)=eαt a Fujita type phenomenon prevails varying the parameter α>0.

Global existence for the nonlinear heat equation on riemannian manifolds with negative sectional curvature / F. Punzo. - In: RIVISTA DI MATEMATICA DELLA UNIVERSITÀ DI PARMA. - ISSN 0035-6298. - 5:1(2014), pp. 113-138.

Global existence for the nonlinear heat equation on riemannian manifolds with negative sectional curvature

F. Punzo
2014

Abstract

We address local existence, blow-up and global existence of mild solutions to the semilinear heat equation on Riemannian manifolds with negative sectional curvature. We deal with a power nonlinearity multiplied by a time-dependent positive function h(t), and initial conditions u0∈Lp(M). We show that depending on the behavior at infinity of h, either every solution blows up in finite time, or a global solution exists, if the initial datum is small enough. In particular, for any power nonlinearity, if h≡1 we have global existence for small initial data, whereas if h(t)=eαt a Fujita type phenomenon prevails varying the parameter α>0.
Settore MAT/05 - Analisi Matematica
2014
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/254270
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact