Automated Function Prediction (AFP) of proteins in Multi-species Networks raises challenging computational problems due to the size of the generated network and the lack of scalability of traditional approaches. We present a network-based approach that allows to predict protein functions in a multi-species setting by exploiting homology relationships between species. The method adopts secondary memory-based technologies to efficiently process huge protein networks using ordinary stand-alone machines.

On the automated function prediction of big multi-species networks / M. Re, M. Mesiti, G. Valentini. ((Intervento presentato al convegno Network Biology SIG - ISMB tenutosi a Boston nel 2014.

On the automated function prediction of big multi-species networks

M. Re
Primo
;
M. Mesiti
Secondo
;
G. Valentini
Ultimo
2014

Abstract

Automated Function Prediction (AFP) of proteins in Multi-species Networks raises challenging computational problems due to the size of the generated network and the lack of scalability of traditional approaches. We present a network-based approach that allows to predict protein functions in a multi-species setting by exploiting homology relationships between species. The method adopts secondary memory-based technologies to efficiently process huge protein networks using ordinary stand-alone machines.
lug-2014
Settore INF/01 - Informatica
Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
On the automated function prediction of big multi-species networks / M. Re, M. Mesiti, G. Valentini. ((Intervento presentato al convegno Network Biology SIG - ISMB tenutosi a Boston nel 2014.
Conference Object
File in questo prodotto:
File Dimensione Formato  
NETBIO-ISMB14ValentiniReMesiti.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 84.14 kB
Formato Adobe PDF
84.14 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/253851
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact