The novel disilazane compound 2-pyridinetetramethyldisilazane (1) has been synthesized. The competition between N-pyridine coordination and Si-H bond activation was studied through its reactivity with two ruthenium complexes. The reaction between 1 and RuH(2)(H(2))(2)(PCy(3))(2) led to the isolation of the new complex RuH(2){(eta(2)-HSiMe(2))N(kappa N-C(5)H(4)N)(SiMe(2)H)}(PCy(3))(2) (2) resulting from the loss of two dihydrogen ligands and coordination of 1 to the ruthenium center via a kappa(2)N,(eta(2)-Si-H) mode. Complex 2 has been characterized by multinuclear NMR experiments ((1)H, (31)P, (13)C, (29)Si), X-ray diffraction and DFT studies. In particular, the HMBC (29)Si-(1)H spectrum supports the presence of two different silicon environments: one Si-H bond is dangling, whereas the other one is eta(2)-coordinated to the ruthenium with a J(SiH) value of 50 Hz. DFT calculations (B3PW91) were also carried out to evaluate the stability of the agostic species versus a formulation corresponding to a bis(sigma-Si-H) isomer and confirmed that N-coordination overcomes any stabilization that could be gained by the establishment of SISHA interactions. There is no exchange between the two Si-H bonds present in 2, as demonstrated by deuterium-labeling experiments. Heating 2 at 70 degrees C under vacuum for 24 h, leads to the formal loss of one equivalent of H(2) from 2 and formation of the 16-electron complex RuH{(SiMe(2))N(kappa N-C(5)H(4)N)(SiMe(2)H)}(PCy(3))(2) (3) formulated as a hydrido(silyl) species on the basis of multinuclear NMR experiments. The dehydrogenation reaction is fully reversible under dihydrogen atmosphere. Reaction of Ru(COD)(COT) with 3 equiv of 1 under a H(2) pressure led to the isolation of the new complex RuH{(SiMe(2))N(kappa N-C(5)H(4)N)(SiMe(2)H)}(3) (4) characterized as a hydridotrisilyl complex by multinuclear NMR techniques, X-ray and neutron diffractions, as well as DFT calculations. The (29)Si HMBC experiments confirm the presence of two different silicon atoms in 4, with a signal at -14.64 ppm for three dangling Si-Me(2)H fragments and a signal at 64.94 ppm (correlating with the hydride signal) assigned to three Si-Me(2)N groups bound to Ru. Comparison of DFT and neutron parameters involving the hydride clearly indicates an excellent correlation. The Si-H distance of similar to 2.15 angstrom is much shorter than the sum of the van der Waals radii and typically in the range of a significant interaction between a silicon and a hydrogen atom (SISHA interactions). In 4, three dangling Si-H groups remain accessible for further functionalization.
Versatile Coordination of 2-Pyridinetetramethyldisilazane at Ruthenium : Ru(II) vs Ru(IV) as Evidenced by NMR, X-ray, Neutron, and DFT Studies / M. Grellier, T. Ayed, J.-C. Barthelat, A. Albinati, S. Mason, L. Vendier, Y. Coppel, S. Sabo-Etienne. - In: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. - ISSN 0002-7863. - 131:22(2009), pp. 7633-7640. [10.1021/ja901140v]
Versatile Coordination of 2-Pyridinetetramethyldisilazane at Ruthenium : Ru(II) vs Ru(IV) as Evidenced by NMR, X-ray, Neutron, and DFT Studies
A. Albinati;
2009
Abstract
The novel disilazane compound 2-pyridinetetramethyldisilazane (1) has been synthesized. The competition between N-pyridine coordination and Si-H bond activation was studied through its reactivity with two ruthenium complexes. The reaction between 1 and RuH(2)(H(2))(2)(PCy(3))(2) led to the isolation of the new complex RuH(2){(eta(2)-HSiMe(2))N(kappa N-C(5)H(4)N)(SiMe(2)H)}(PCy(3))(2) (2) resulting from the loss of two dihydrogen ligands and coordination of 1 to the ruthenium center via a kappa(2)N,(eta(2)-Si-H) mode. Complex 2 has been characterized by multinuclear NMR experiments ((1)H, (31)P, (13)C, (29)Si), X-ray diffraction and DFT studies. In particular, the HMBC (29)Si-(1)H spectrum supports the presence of two different silicon environments: one Si-H bond is dangling, whereas the other one is eta(2)-coordinated to the ruthenium with a J(SiH) value of 50 Hz. DFT calculations (B3PW91) were also carried out to evaluate the stability of the agostic species versus a formulation corresponding to a bis(sigma-Si-H) isomer and confirmed that N-coordination overcomes any stabilization that could be gained by the establishment of SISHA interactions. There is no exchange between the two Si-H bonds present in 2, as demonstrated by deuterium-labeling experiments. Heating 2 at 70 degrees C under vacuum for 24 h, leads to the formal loss of one equivalent of H(2) from 2 and formation of the 16-electron complex RuH{(SiMe(2))N(kappa N-C(5)H(4)N)(SiMe(2)H)}(PCy(3))(2) (3) formulated as a hydrido(silyl) species on the basis of multinuclear NMR experiments. The dehydrogenation reaction is fully reversible under dihydrogen atmosphere. Reaction of Ru(COD)(COT) with 3 equiv of 1 under a H(2) pressure led to the isolation of the new complex RuH{(SiMe(2))N(kappa N-C(5)H(4)N)(SiMe(2)H)}(3) (4) characterized as a hydridotrisilyl complex by multinuclear NMR techniques, X-ray and neutron diffractions, as well as DFT calculations. The (29)Si HMBC experiments confirm the presence of two different silicon atoms in 4, with a signal at -14.64 ppm for three dangling Si-Me(2)H fragments and a signal at 64.94 ppm (correlating with the hydride signal) assigned to three Si-Me(2)N groups bound to Ru. Comparison of DFT and neutron parameters involving the hydride clearly indicates an excellent correlation. The Si-H distance of similar to 2.15 angstrom is much shorter than the sum of the van der Waals radii and typically in the range of a significant interaction between a silicon and a hydrogen atom (SISHA interactions). In 4, three dangling Si-H groups remain accessible for further functionalization.File | Dimensione | Formato | |
---|---|---|---|
ja901140v.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
1.04 MB
Formato
Adobe PDF
|
1.04 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.