Taste is one of the five senses and accounts for the sensory impression of food or other substances on the tongue. It represents an innate mechanism of defence by which humans and animals detect safety or threat in food. Notably, taste is a whole-body experience since taste receptors, besides being located in the taste buds, are also found in non-sensory tissues, like the gut or the airways, playing still not completely known roles, for example, in glucose metabolism as well as in energy homeostasis. This clearly lays the groundwork for scientific investigations aimed to develop chemical tools through which modulate these physiopathological mechanisms. Although both GPCR and Ion Channels mediate these processes, this Thesis focuses on the latter class, so far less explored than the former one, involving four members of the Transient Potential Receptors family, namely TRPM8, TRPM5, TRPV1 and TRPV4. Although if each study presented its own objectives, peculiarities and relative computational approaches, a common path can be traced for all of them. First, the three-dimensional structure was generated by homology modelling techniques, by exploiting a well validated fragmental approach, then the obtained homology model was tested by docking calculations, which while including preliminary correlative studies, were always aimed at developing reliable strategies for virtual screening campaigns. The here reported results provide further remarkable confirmations for the reliability of the already modelled (and exploited) TRPM8 model, while the here generated TRPM5 and TRPV4 models afford results (despite obtained in a validating preliminary phase) in line with those of TRPM8 further emphasizing the reliability of the fragmental approach. Not to mention that the described targeted strategy to model TRPV1 suggests that previously generated homology models can be then exploited to assist the modeling of highly homologous proteins still obtaining encouraging results but with a significant saving of the required computational efforts. Finally, the here proposed TRPM8 results offer a convincing proof of the potential improvements that may be obtained combining ligand-based and structure-based approaches in a virtual screening analysis.
IN SILICO SCREENING OF TASTE RECEPTORS: AN INTEGRATE MODELING APPROACH / M. Lo Monte ; tutor : G. Vistoli ; coordinator: E. Valoti. DIPARTIMENTO DI SCIENZE FARMACEUTICHE, 2015 Jan 15. 27. ciclo, Anno Accademico 2014. [10.13130/lo-monte-matteo_phd2015-01-15].
IN SILICO SCREENING OF TASTE RECEPTORS: AN INTEGRATE MODELING APPROACH.
M. LO MONTE
2015
Abstract
Taste is one of the five senses and accounts for the sensory impression of food or other substances on the tongue. It represents an innate mechanism of defence by which humans and animals detect safety or threat in food. Notably, taste is a whole-body experience since taste receptors, besides being located in the taste buds, are also found in non-sensory tissues, like the gut or the airways, playing still not completely known roles, for example, in glucose metabolism as well as in energy homeostasis. This clearly lays the groundwork for scientific investigations aimed to develop chemical tools through which modulate these physiopathological mechanisms. Although both GPCR and Ion Channels mediate these processes, this Thesis focuses on the latter class, so far less explored than the former one, involving four members of the Transient Potential Receptors family, namely TRPM8, TRPM5, TRPV1 and TRPV4. Although if each study presented its own objectives, peculiarities and relative computational approaches, a common path can be traced for all of them. First, the three-dimensional structure was generated by homology modelling techniques, by exploiting a well validated fragmental approach, then the obtained homology model was tested by docking calculations, which while including preliminary correlative studies, were always aimed at developing reliable strategies for virtual screening campaigns. The here reported results provide further remarkable confirmations for the reliability of the already modelled (and exploited) TRPM8 model, while the here generated TRPM5 and TRPV4 models afford results (despite obtained in a validating preliminary phase) in line with those of TRPM8 further emphasizing the reliability of the fragmental approach. Not to mention that the described targeted strategy to model TRPV1 suggests that previously generated homology models can be then exploited to assist the modeling of highly homologous proteins still obtaining encouraging results but with a significant saving of the required computational efforts. Finally, the here proposed TRPM8 results offer a convincing proof of the potential improvements that may be obtained combining ligand-based and structure-based approaches in a virtual screening analysis.File | Dimensione | Formato | |
---|---|---|---|
phd_unimi_R09667.pdf
Open Access dal 25/06/2015
Tipologia:
Tesi di dottorato completa
Dimensione
4.78 MB
Formato
Adobe PDF
|
4.78 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.