We consider the Wulff-type energy functional, (Formula Presented.) where B is positive, monotone and convex, and H is positive homogeneous of degree 1. The critical points of this functional satisfy a possibly singular or degenerate quasilinear equation in an anisotropic medium. We prove that the gradient of the solution is bounded at any point by the potential F(u) and we deduce several rigidity and symmetry properties.

Gradient bounds and rigidity results for singular, degenerate, anisotropic partial differential equations / M. Cozzi, A. Farina, E. Valdinoci. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 331:1(2014 Oct), pp. 189-214. [10.1007/s00220-014-2107-9]

Gradient bounds and rigidity results for singular, degenerate, anisotropic partial differential equations

M. Cozzi
Primo
;
E. Valdinoci
Ultimo
2014

Abstract

We consider the Wulff-type energy functional, (Formula Presented.) where B is positive, monotone and convex, and H is positive homogeneous of degree 1. The critical points of this functional satisfy a possibly singular or degenerate quasilinear equation in an anisotropic medium. We prove that the gradient of the solution is bounded at any point by the potential F(u) and we deduce several rigidity and symmetry properties.
nonnegative mean-curvature; elliptic-equations; unbounded-domains; crystal-growth; wulff shape; regularity; theorem
Settore MAT/05 - Analisi Matematica
Settore MATH-03/A - Analisi matematica
ott-2014
3-lug-2014
Article (author)
File in questo prodotto:
File Dimensione Formato  
art:10.1007/s00220-014-2107-9.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Licenza: Nessuna licenza
Dimensione 371.42 kB
Formato Adobe PDF
371.42 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1305.2303v2.pdf

accesso aperto

Descrizione: Licensa: https://arxiv.org/licenses/nonexclusive-distrib/1.0/license.html
Tipologia: Pre-print (manoscritto inviato all'editore)
Licenza: Altro
Dimensione 306.19 kB
Formato Adobe PDF
306.19 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/252352
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 37
  • OpenAlex ND
social impact