We consider the Wulff-type energy functional, (Formula Presented.) where B is positive, monotone and convex, and H is positive homogeneous of degree 1. The critical points of this functional satisfy a possibly singular or degenerate quasilinear equation in an anisotropic medium. We prove that the gradient of the solution is bounded at any point by the potential F(u) and we deduce several rigidity and symmetry properties.
Gradient bounds and rigidity results for singular, degenerate, anisotropic partial differential equations / M. Cozzi, A. Farina, E. Valdinoci. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 331:1(2014 Oct), pp. 189-214. [10.1007/s00220-014-2107-9]
Gradient bounds and rigidity results for singular, degenerate, anisotropic partial differential equations
M. Cozzi
Primo
;E. ValdinociUltimo
2014
Abstract
We consider the Wulff-type energy functional, (Formula Presented.) where B is positive, monotone and convex, and H is positive homogeneous of degree 1. The critical points of this functional satisfy a possibly singular or degenerate quasilinear equation in an anisotropic medium. We prove that the gradient of the solution is bounded at any point by the potential F(u) and we deduce several rigidity and symmetry properties.| File | Dimensione | Formato | |
|---|---|---|---|
|
art:10.1007/s00220-014-2107-9.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Licenza:
Nessuna licenza
Dimensione
371.42 kB
Formato
Adobe PDF
|
371.42 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
1305.2303v2.pdf
accesso aperto
Descrizione: Licensa: https://arxiv.org/licenses/nonexclusive-distrib/1.0/license.html
Tipologia:
Pre-print (manoscritto inviato all'editore)
Licenza:
Altro
Dimensione
306.19 kB
Formato
Adobe PDF
|
306.19 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




