Diabetic nephropathy (DN) is a frequent complication in patients with diabetes. Although the majority of DN models and human studies have focused on glomeruli, tubulointerstitial damage is a major feature of DN and an important predictor of renal dysfunction. This study sought to investigate molecular markers of pathogenic pathways in the renal interstitium of patients with DN. Microdissected tubulointerstitial compartments from biopsies with established DN and control kidneys were subjected to expression profiling. Analysis of candidate genes, potentially involved in DN on the basis of common hypotheses, identified 49 genes with significantly altered expression levels in established DN in comparison with controls. In contrast to some rodent models, the growth factors vascular endothelial growth factor A (VEGF-A) and epidermal growth factor (EGF) showed a decrease in mRNA expression in DN. This was validated on an independent cohort of patients with DN by real-time reverse transcriptase-PCR. Immunohistochemical staining for VEGF-A and EGF also showed a reduced expression in DN. The decrease of renal VEGF-A expression was associated with a reduction in peritubular capillary densities shown by platelet-endothelial cell adhesion molecule-1/CD31 staining. Furthermore, a significant inverse correlation between VEGF-A and proteinuria, as well as EGF and proteinuria, and a positive correlation between VEGF-A and hypoxia-inducible factor-la mRNA was found. Thus, in human DN, a decrease of VEGF-A, rather than the reported increase as described in some rodent models, may contribute to the progressive disease. These findings and the questions.

Interstitial vascular rarefaction and reduced VEGF-A expression in human diabetic nephropathy / M.T. Lindenmeyer, M. Kretzler, A. Boucherot, S. Berra, Y. Yasuda, A. Henger, F. Eichinger, S. Gaiser, H. Schmid, M.P. Rastaldi, R.W. Schrier, D. Schlöndorff, C.D. Cohen. - In: JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY. - ISSN 1046-6673. - 18:6(2007 Jun), pp. 1765-1776. [10.1681/ASN.2006121304]

Interstitial vascular rarefaction and reduced VEGF-A expression in human diabetic nephropathy

S. Berra;
2007

Abstract

Diabetic nephropathy (DN) is a frequent complication in patients with diabetes. Although the majority of DN models and human studies have focused on glomeruli, tubulointerstitial damage is a major feature of DN and an important predictor of renal dysfunction. This study sought to investigate molecular markers of pathogenic pathways in the renal interstitium of patients with DN. Microdissected tubulointerstitial compartments from biopsies with established DN and control kidneys were subjected to expression profiling. Analysis of candidate genes, potentially involved in DN on the basis of common hypotheses, identified 49 genes with significantly altered expression levels in established DN in comparison with controls. In contrast to some rodent models, the growth factors vascular endothelial growth factor A (VEGF-A) and epidermal growth factor (EGF) showed a decrease in mRNA expression in DN. This was validated on an independent cohort of patients with DN by real-time reverse transcriptase-PCR. Immunohistochemical staining for VEGF-A and EGF also showed a reduced expression in DN. The decrease of renal VEGF-A expression was associated with a reduction in peritubular capillary densities shown by platelet-endothelial cell adhesion molecule-1/CD31 staining. Furthermore, a significant inverse correlation between VEGF-A and proteinuria, as well as EGF and proteinuria, and a positive correlation between VEGF-A and hypoxia-inducible factor-la mRNA was found. Thus, in human DN, a decrease of VEGF-A, rather than the reported increase as described in some rodent models, may contribute to the progressive disease. These findings and the questions.
endothelial growth-factor; prevents glomerular hypertrophy; gene-expression; urinary-excretion; oxidative stress; messenger-RNA; renal-failure; kidney; injury; pathophysiology
Settore MED/14 - Nefrologia
Settore BIO/13 - Biologia Applicata
Settore BIO/11 - Biologia Molecolare
giu-2007
mag-2007
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/252343
Citazioni
  • ???jsp.display-item.citation.pmc??? 100
  • Scopus 204
  • ???jsp.display-item.citation.isi??? 195
social impact